
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Lời giải:
Đặt \(\frac{1}{x-1}=a; \frac{1}{y-1}=b\) thì HPT trở thành:
\(\left\{\begin{matrix} a-3b=-1\\ 2a+4b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{2}\\ b=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x-1}=\frac{1}{2}\\ \frac{1}{y-1}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=y=3\)
Vậy HPT có nghiệm $(x,y)=(3,3)$

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

\(\Leftrightarrow4\left(x+1\right)+\sqrt{2\left(x+1\right)^2+\left(x^2+1\right)}-3\sqrt{x^2+1}=0\)
\(a=x+1;\text{ }b=\sqrt{x^2+1}\)
\(\Rightarrow4a-3b+\sqrt{2a^2+b^2}=0\Leftrightarrow3b-4a=\sqrt{2a^2+b^2}\)
\(\Rightarrow\left(3b-4a\right)^2=2a^2+b^2\Leftrightarrow7\left(\frac{a}{b}\right)^2-12\frac{a}{b}+4=0\)
\(\Leftrightarrow\frac{a}{b}=\frac{6\pm2\sqrt{2}}{7}\)
Khá xấu nhưng vẫn giải được nhé. Bạn kiểm tra lại ở trên rồi tính toán nốt.
\(|x^2+1|-(x^2-4x+4)=3x\\\Rightarrow x^2+1-x^2+4x-4=3x(\text{vì }x^2 + 1 > 0 \forall x )\\\Leftrightarrow 4x-3=3x\\\Leftrightarrow4x-3x=3\\\Leftrightarrow x=3\)
Vậy nghiệm của phương trình là \(x=3\).
Do \(x^2+1>0;\forall x\Rightarrow\left|x^2+1\right|=x^2+1\)
Phương trình trở thành:
\(x^2+1-\left(x^2-4x+4\right)=3x\)
\(\Leftrightarrow4x-3=3x\)
\(\Leftrightarrow x=3\)