
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1
bài 2: =(x-3)2+1
vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3

áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)
Vậy ...

phân tích n^3 + 3n^2 + 2n thảnh n.(n+1).(n+2) chia hết cho 6 vì chia hết cho 2 và 3 chia hết cho 15 là chia hết cho 3 với 5 nha

Bạn nhân 2 cả 3 câu rồi phân tích ra hằng đẳng thức là được

= x2 - bx - ax + ab = x(x-b) - a(x-b) = (x-b)(x-a).
Chúc bạn học tốt
Phân tích đa thức thành nhân tử :
\(x^2-\left(a-b\right)x+ab\)
\(=x^2-\left(ax+bx\right)+ab\)
\(=x^2-ax-bx+ab\)
\(=\left(x^2-ax\right)-\left(bx+ab\right)\)
\(=\left[x\left(x-a\right)\right]-\left[b\left(x-a\right)\right]\)
\(=\left(x-a\right)\left(x-b\right)\)
\(A=-8x^2-6x=-2\left(4x^2+3x\right)=-2\left(4x^2+2.\frac{3}{4}.2x+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left(2x+\frac{3}{4}\right)^2+\frac{9}{8}\le\frac{9}{8}\)
=> Min A = 9/8
Dấu "=" xảy ra <=> \(2x+\frac{3}{4}=0\)
<=> x = -3/8
Vậy Min A = 9/8 <=> x = -3/8
Trả lời:
\(A=-8x^2-6x=-2\left(4x^2+3x\right)=-2\left(4x^2+2.2x.\frac{3}{4}+\frac{9}{16}-\frac{9}{16}\right)\)
\(=-2\left[\left(2x+\frac{3}{4}\right)^2-\frac{9}{16}\right]=-2\left(2x+\frac{3}{4}\right)^2+\frac{9}{8}\le\frac{9}{8}\forall x\)
Dấu "=" xảy ra khi \(2x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{8}\)
Vậy GTLN của A = 9/8 khi x = - 3/8
b, \(B=5x-4x^2=-\left(4x^2-5x\right)=-\left(4x^2-2.2x.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}\right)\)
\(=-\left[\left(2x-\frac{5}{4}\right)^2-\frac{25}{16}\right]=-\left(2x-\frac{5}{4}\right)^2+\frac{25}{16}\le\frac{25}{16}\forall x\)
Dấu "=" xảy ra khi \(2x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{8}\)
Vậy GTLN của B = 25/16 khi x = 5/8