Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì T(5n) - T(2n) chẵn => T(5n) + T(2n) chẵn
Đặt T(5n) = x; T(2n) = y => x +y chẵn
Số tự nhiên nhỏ nhất có x chữ số là 10x-1; số tự nhiên nhỏ nhất có x + 1 chữ số là 10x
=> 10x-1 < 5n < 10x
Tương tự, 10y-1 < 2n < 10y
=> 10x-1.10y-1 < 5n.2n < 10x. 10y => 10x+y-2 < 10n < 10x+y => x+ y - 2 < n < x+y
Vì x+ y là số tự nhiên => x+ y - 1 = n mà x+y chẵn => x+y - 1 lẻ => n lẻ
Cho xyzt là các chữ số thỏa mãn xy khác không tìm số a = x y z t biết a - 2 x y z t = xz với kí hiệu xyz t là số tự nhiên có 4 chữ số thứ tự là x y z t
\(\dfrac{625}{5^n}\)=5
=>\(\dfrac{5^4}{5^n}\) =5
=>\(5^4\) :\(5^n\) = 5
=>\(5^{4-n}\) =\(5^1\)
=>4\(-\)n=1
=>n=4-1
=>n=3
Bài 2 sau khi đã sửa đề thành $5x=7z$:
Ta có:
\(\frac{x}{y}=\frac{3}{2}\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{21}=\frac{y}{14}(1)\)
\(5x=7z\Leftrightarrow \frac{x}{7}=\frac{z}{5}\Leftrightarrow \frac{x}{21}=\frac{z}{15}(2)\)
Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{15}$ và đặt bằng $k$
$\Rightarrow x=21k; y=14k; z=15k$
Khi đó:
$x-2y+z=32$
$\Leftrightarrow 21k-28k+15k=32\Leftrightarrow 8k=32\Rightarrow k=4$
$\Rightarrow x=21k=84; y=14k=56; z=15k=60$
Bài 2: $5z=7z$ hình như sai, bạn coi lại đề.
Bài 3:
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Leftrightarrow \frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
\(\Leftrightarrow \frac{9a+(a+b)}{a+b}=\frac{9b+(b+c)}{b+c}\Leftrightarrow \frac{9a}{a+b}+1=\frac{9b}{b+c}+1\)
\(\Leftrightarrow \frac{a}{a+b}=\frac{b}{b+c}\Rightarrow ab+ac=ab+b^2\)
\(\Leftrightarrow ac=b^2\Rightarrow \frac{a}{b}=\frac{b}{c}\) (đpcm)