K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

 \(tana.cota=1\Rightarrow tana=\dfrac{1}{cota}=\dfrac{1}{\dfrac{40}{9}}=\dfrac{9}{40}\)

\(1+tan^2a=\dfrac{1}{cos^2a}=1+\left(\dfrac{9}{40}\right)^2=\dfrac{1681}{1600}\\ \Rightarrow cos^2a=\dfrac{1600}{1681}\\ \Rightarrow cosa=\dfrac{40}{41}\)

\(1+cot^2a=\dfrac{1}{sin^2a}=1+\left(\dfrac{40}{9}\right)^2=\dfrac{1681}{81}\\ \Rightarrow sin^2a=\dfrac{81}{1681}\\ \Rightarrow sina=\dfrac{9}{41}\)

28 tháng 7 2018

ai giúp mik vs : cảm ơn mn nhé >3

29 tháng 7 2018

ai giúp mik đi huhu

7 tháng 8 2020

Lời giải

Các tỉ số lượng giác của góc β là:

Giải bài tập Toán 9 | Giải Toán lớp 9 Tra Loi Cau Hoi Toan 9 Tap 1 Bai 2 Trang 73

7 tháng 8 2020

mik nhầm nhé

Bài 2: 

\(\cos\alpha=\sqrt{1-\dfrac{4}{9}}=\dfrac{\sqrt{5}}{3}\)

\(\tan\alpha=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

\(\cot\alpha=\dfrac{\sqrt{5}}{2}\)

11 tháng 7 2023

\(cot\alpha=\dfrac{40}{9}\Rightarrow tan\alpha=\dfrac{1}{cot\alpha}=\dfrac{1}{\dfrac{40}{9}}=\dfrac{9}{40}\)

+) \(\dfrac{1}{cos^2\alpha}=1+tan^2\alpha\)

\(\Leftrightarrow\dfrac{1}{cos^2\alpha}=1+\left(\dfrac{9}{40}\right)^2\\ \Rightarrow cos\alpha=\sqrt{1:\left(1+\left(\dfrac{9}{40}\right)^2\right)}=\dfrac{40}{41}\)

+) \(sin^2\alpha=1-cos^2\alpha\)

\(\Leftrightarrow sin\alpha=\sqrt{1-cos^2\alpha}=\sqrt{1-\left(\dfrac{40}{41}\right)^2}=\dfrac{9}{41}\)

6 tháng 10 2023

Bài 1:

a) Ta có:

\(tanB=\dfrac{AC}{AB}\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{2}\)

\(\Rightarrow AC=\dfrac{AB\cdot5}{2}=\dfrac{6\cdot5}{2}=15\)  

b) Áp dụng Py-ta-go ta có: 

\(BC^2=AB^2+AC^2=6^2+15^2=261\)

\(\Rightarrow BC=\sqrt{261}=3\sqrt{29}\)

6 tháng 10 2023

Bài 2: 

\(\left\{{}\begin{matrix}sinM=sin40^o\approx0,64\Rightarrow cosN\approx0,64\\cosM=cos40^o\approx0,77\Rightarrow sinN\approx0,77\\tanM=tan40^o\approx0,84\Rightarrow cotN\approx0,84\\cotM=cot40^o\approx1,19\Rightarrow tanN\approx1,19\end{matrix}\right.\)

20 tháng 11 2023

Xét ΔABC vuông tại A có

\(sinB=sin56\simeq0,83\)

\(cosB=cos56\simeq0,56\)

\(tanB=tan56\simeq1,48\)

\(cotB=cot56\simeq0,67\)

Xét ΔABC vuông tại A có

\(cosC=sinB\simeq0,83\)

\(sinC=cosB\simeq-0,56\)

\(cotC=tanB=tan56\simeq1,48\)

\(tanC=cotB\simeq0,67\)