Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left( { - 1} \right) + \left( { - 3} \right) = - \left( {1 + 3} \right) = - 4\)
\(\left( { - 3} \right) + \left( { - 1} \right) = - \left( {3 + 1} \right) = - 4\)
\( \Rightarrow \left( { - 1} \right) + \left( { - 3} \right) = \left( { - 3} \right) + \left( { - 1} \right)\)
\(\left( { - 7} \right) + \left( { + 6} \right) = - \left( {7 - 6} \right) = - 1\)
\(\left( { + 6} \right) + \left( { - 7} \right) = - \left( {7 - 6} \right) = - 1\)
\( \Rightarrow \left( { - 7} \right) + \left( { + 6} \right) = \left( { + 6} \right) + \left( { - 7} \right)\)
A(-1) (-2) (-3) . . . . ( -2009) <0
B(-1) (-2) (-3) . . . . (-10) =1.2.3.....10
Không làm các phép tính, hãy so sánh :
a) với
Đặt A= (−1)(−2)(−3)....(−2009)(−1)(−2)(−3)....(−2009)
Vì A chứa 2009 thừa số nên tích các thừa số trên sẽ là số âm nên a sẽ bé hơn 0
\(\Rightarrow A< 0\) hay (−1)(−2)(−3)....(−2009)(−1)(−2)(−3)....(−2009) < 0
b) với
Đặt B =(−1)(−2)(−3)....(−10)(−1)(−2)(−3)....(−10) = 1.2.3....10
Vì B chứa 10 số hạng nên tích sẽ là số nguyên dương nên sẽ bằng tích các số đối của từng thừa số trong tích nên \(\Rightarrow B=1\times2\times...\times10\)
\(\begin{array}{l}\left[ {\left( { - 3} \right) + 4} \right] + 2 = \left( {4 - 3} \right) + 2\\ = 1 + 2 = 3\end{array}\)
\(\begin{array}{l}\left( { - 3} \right) + \left( {4 + 2} \right) = \left( { - 3} \right) + 6\\ = 6 - 3 = 3\end{array}\)
\(\begin{array}{l}\left[ {\left( { - 3} \right) + 2} \right] + 4 = - \left( {3 - 2} \right) + 4\\ = - 1 + 4 = 3\end{array}\)
a) \(\left( { + 4} \right).\left( { - 8} \right)\) là tích của hai số nguyên khác dấu nên mang dấu âm. Vậy \(\left( { + 4} \right).\left( { - 8} \right) < 0\)
b) \(\left( { - 3} \right).4\) là tích của hai số nguyên khác dấu nên mang dấu âm. Vậy\(\left( { - 3} \right).4 < 4\)
c) \(\left( { - 5} \right).\left( { - 8} \right)\) là tích của hai số nguyên âm nên \(\left( { - 5} \right).\left( { - 8} \right) = 5.8\)
\(\left( { + 5} \right).\left( { + 8} \right)\) là tích của hai số nguyên dương nên \(\left( { + 5} \right).\left( { + 8} \right) = 5.8\)
Vậy \(\left( { - 5} \right).\left( { - 8} \right) = \left( { + 5} \right).\left( { + 8} \right)\).
a)\(\left( { - 35,1} \right).\left( { - 64} \right):13 \approx \left( { - 35} \right).\left( { - 64} \right):13 \approx 172\)
b)\(\left( { - 8,8} \right).\left( { - 4,1} \right):{\rm{ }}2,6 \approx ( - 9).( - 4):3 = 12\)
c) \(7,9.\left( { - 73} \right):\left( { - 23} \right) \approx 8.( - 73):( - 23) \approx 25\).
a) \( - \left( {4 + 7} \right) = - 11\)
\(\begin{array}{l}\left( { - 4 - 7} \right) = \left( { - 4} \right) + \left( { - 7} \right)\\ = - \left( {4 + 7} \right) = - 11\\ \Rightarrow \left( { - 4 - 7} \right) = - \left( {4 + 7} \right)\end{array}\)
b)
\(\begin{array}{l} - \left( {12 - 25} \right) = - \left[ {12 + \left( { - 25} \right)} \right]\\ = - \left[ { - \left( {25 - 12} \right)} \right] = - \left( { - 13} \right) = 13\end{array}\)
\(\begin{array}{l}\left( { - 12 + 25} \right) = 25 - 12 = 13\\ \Rightarrow - \left( {12 - 25} \right) = \left( { - 12 + 25} \right)\end{array}\)
c)
\(\begin{array}{l} - \left( { - 8 + 7} \right) = - \left[ { - \left( {8 - 7} \right)} \right] = - \left( { - 1} \right) = 1\\\left( {8 - 7} \right) = 1\\ \Rightarrow - \left( { - 8 + 7} \right) = \left( {8 - 7} \right)\end{array}\)
d)
\(\begin{array}{l} + \left( { - 15 - 4} \right) = + \left[ {\left( { - 15} \right) + \left( { - 4} \right)} \right]\\ = + \left[ { - \left( {15 + 4} \right)} \right] = + \left( { - 19} \right) = - 19\\\left( { - 15 - 4} \right) = \left( { - 15} \right) + \left( { - 4} \right)\\ = - \left( {15 + 4} \right) = - 19\\ \Rightarrow + \left( { - 15 - 4} \right) = \left( { - 15 - 4} \right)\end{array}\)
e)
\(\begin{array}{l} + \left( {23 - 12} \right) = + 11 = 11\\\left( {23 - 12} \right) = 11\\ \Rightarrow + \left( {23 - 12} \right) = \left( {23 - 12} \right)\end{array}\)
\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)
\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)
\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)
\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)
Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B
`A = 3/4 xx 8/9 xx ... xx 99/100`
`= (1xx3)/(2xx2) xx (2xx4)/(3xx3) xx ... xx (9xx11)/(10xx10)`
`= (1xx2xx3xx ... xx 9)/(2xx3xx...xx10) xx (3xx4xx5xx...xx 11)/(2xx3xx4xx...xx 10)`
`= 1/10 xx 11`
`= 11/10`.
Ta có: `11/10 > 1`
`11/19 < 1`.
`=> A > 11/19`.