Không làm phép tính, hãy cho biết các số sau có chia hết cho 5 kh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
17 tháng 7 2021

Ta có nhận xét rằng, lũy thửa của các số có chữ số tận cùng là \(0,1\)đều có chữ số tận cùng lần lượt là \(0,1\).

Do đó \(2000^{2001}\)có chữ số tận cùng là \(0\)\(2001^{2002}\)có chữ số tận cùng là \(1\).

Do đó \(A=2000^{2001}+2001^{2002}\)có chữ số tận cùng là \(1\)do đó \(A\)không chia hết cho \(5\).

18 tháng 7 2017

ta có :

A=....0+......1=....1

Số chia hết cho 5 thì có chữ số tận cùng là 0 hoặc 5 

nhưng chữ số tận cùng của A là 1

=> A\(\)không chia hết cho 5

18 tháng 7 2017

A=20002001+20012000

Ta thấy 2000 có chữ số tận cùng là 0 

=> 20002001 có chữ số tận cùng là 0 => 20002001 chia het cho 5

           20012000 có chữ số tận cùng là 1                                                      => 20002001+20012000 ko chia hết cho 5

=> 20012000 có chữ số tận cùng là 1 => 20012000 ko chia hết cho 5  

A= 1+2+22+23+.......+298+299     

A= (1+2)+(22+23)+.......+(298+299 )

A=3+22.(1+2)+...+298.(1+2)

A=   3+22.3+...+298.3 

A=3.(22+...+298)

Vid 3 chia hết cho 3 nên A chia hết cho 3

Đơn giản như đang giỡn

HT

28 tháng 10 2021

giúp mình với

25 tháng 12 2021

S = 1 + 3 + 32 + 33 + ... + 38 + 39

S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 38 + 39 )

S = 4 + ( 1 . 32 + 3 .32 ) + .. + ( 1. 38 + 3 . 38 ) 

S = 4 + 4 .32 + .. + 4 . 38

S = 4 ( 1 + 32 + ... + 38 ) \(⋮\)4

Vậy S \(⋮\)4 ( đpcm )

Học tốt

#Dương

S = 1 + 3 + 3+ 3+ 34+35+ 3+ 3+ 38+39

S=( 1 + 3)+(3+ 33)+(34+35)+(3+ 37)+(38+39)

s=4+32.(3+1)+32.(3+1)+34.(3+1)+36.(3+1)+38.(3+1)

S=4.(1+32+34+36+38)

CHIA HẾT CHO 4

25 tháng 7 2021

i) \(2345-1000\div\left[19-2\left(21-18\right)^2\right]\)

\(=\)\(2345-1000\div\left[19-2.3^2\right]\)

\(=\)\(2345-1000\div\left[19-2.9\right]\)

\(=\)\(2345-1000\div\left[19-18\right]\)

\(=\)\(2345-1000\div1\)

\(=\)\(2345-1000\)

\(=\)\(1345\)

j) \(128-\left[68+8\left(37-35\right)^2\right]\div4\)

\(=\)\(128-\left[68+8.2^2\right]\div4\)

\(=\)\(128-\left[68+8.4\right]\div4\)

\(=\)\(128-\left[68+32\right]\div4\)

\(=\)\(128-100\div4\)

\(=\)\(128-25\)

\(=\)\(3\)

k) \(568-\left\{5\left[143-\left(4-1\right)^2\right]+10\right\}\div10\)

\(=\)\(568-\left\{5\left[143-3^2\right]+10\right\}\div10\)

\(=\)\(568-\left\{5\left[143-9\right]+10\right\}\div10\)

\(=\)\(568-\left\{5.134+10\right\}\div10\)

\(=\)\(568-\left\{670+10\right\}\div10\)

\(=\)\(568-680\div10\)

\(=\)\(568-68\)

\(=\)\(500\)

25 tháng 7 2021

a) \(107-\left\{38+\left[7.3^2-24\div6+\left(9-7\right)^3\right]\right\}\div15\)

\(=\)\(107-\left\{38+\left[7.3^2-24\div6+2^3\right]\right\}\div15\)

\(=\)\(107-\left\{38+\left[7.9-4+8\right]\right\}\div15\)

\(=\)\(107-\left\{38+\left[63-4+8\right]\right\}\div15\)

\(=\)\(107-\left\{38+67\right\}\div15\)

\(=\)\(107-105\div15\)

\(=\)\(107-7\)

\(=\)\(7\)

b) \(307-\left[\left(180-160\right)\div2^2+9\right]\div2\)

\(=\)\(307-\left[20\div4+9\right]\div2\)

\(=\)\(307-\left[5+9\right]\div2\)

\(=\)\(307-14\div2\)

\(=\)\(307-7\)

\(=\)\(300\)

c) \(205-\left[1200-\left(4^2-2.3\right)^3\right]\div40\)

\(=\)\(205-\left[1200-\left(16-6\right)^3\right]\div40\)

\(=\)\(205-\left[1200-10^3\right]\div40\)

\(=\)\(205-\left[1200-1000\right]\div40\)

\(=\)\(205-200\div40\)

\(=\)\(205-5\)

\(=\)\(200\)

10 tháng 9 2017

\(2002^{2001}\)
 

4 tháng 10 2018

Câu a ko chia hết cho 5 và 2

Câu b chia hết cho 2 nhưng ko chia hết cho 5

25 tháng 10 2021

a. S = 1 + 2 + 2^2 + 2^3 + ... + 2^8 + 2^9

Ta có: 2 = 1 . 2

           2^2 = 2 . 2

           2^3 = 2^2 . 2

           .....

=>       1 + 2 + 2^2 + ... + 2^8 + (2^8 . 2)

=>       1 + 2 + 2^2 + ... + (2^8 . 3)

=>       1 + 2 + 2^2 + ... + 2^7 + (2^7 .6)

=>       1 + 2 + 2^2 + ... + (2^7 . 7)

=>        .....

=>        1 + 2 . 311

Câu 1 : (2 điểm) Cho biểu thức  a=a^3+2a^2-1/a^3+2a^2+2a+1a, Rút gọn biểu thứcb, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.Câu 2: (1 điểm)       Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc=2^2-1 và cba= (n-20^2Câu 3: (2 điểm)a. Tìm n để n2 + 2006 là một số chính phươngb. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 +...
Đọc tiếp

Câu 1 : (2 điểm) Cho biểu thức  a=a^3+2a^2-1/a^3+2a^2+2a+1

a, Rút gọn biểu thức

b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

Câu 2: (1 điểm)

      Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc=2^2-1 và cba= (n-20^2

Câu 3: (2 điểm)

a. Tìm n để n2 + 2006 là một số chính phương

b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.

 

Câu 4: (2 điểm)

a. Cho a, b, n Î N* Hãy so sánh  a+n / b+n và a/b. Cho  A = 10^11-1/10^12-1;      B = 10^10+1/10^11+1. So sánh A và B.

 

Câu 5: (2 điểm)

       Cho 10 số tự nhiên bất kỳ :     a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số  hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

 

Câu 6: (1 điểm)

      Cho 2006 đường thẳng trong đó bất kì 2 đườngthẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng

2
6 tháng 3 2017

đề trường nào, năm nào vậy bạn.

17 tháng 5 2017

CÂU1

a)

a=  a^3+2a^2-1/a^3+2a^2+2a+1

a=(a+1)(a^2+a-1)/(a+1)(a^2+a+1)

a=a^2+a-1/a^2+a+1

b)

Gọi d là ước chung lớn nhất của a^2+a-1 và a^2+a+1

Vì a^2 + a -1=a(a=1)-1 là số lẻ nên d là số lẻ

Mặt khác, 2= [a^2+a+1-(a^2+a-1)] chia hết cho d

Nên d=1 tức là a^2+a+1 và a^2+a-1 là nguyên tố cùng nhau

Vậy biểu thức a là phân số tối giản

CÂU 6

Mỗi đường thẳng cắt 2005 đường thẳng còn lại tạo nên 2005 giao điểm. Mà có 2006 đường thẳng => có:(2005x2006):2 =1003x 2005 = 2011015 ( giao điểm)