K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Khoảng cách từ điểm \(A\left( {1;1} \right)\) đến đường thẳng \(\Delta :3x + 4y + 13 = 0\) bằng:

\(d\left( {A,\Delta } \right) = \dfrac{{\left| {3.1 + 4.1 + 13} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 4\)

Chọn D

30 tháng 3 2017

Áp dụng công thức:

d(M0 ;∆) = \(\dfrac{\left|ax_0+by_0+c\right|}{\sqrt{a^2+b^2}}\)

a) d(M0 ;∆) = \(\dfrac{\left|4\cdot3+3\cdot5+1\right|}{\sqrt{4^2+3^2}}=\dfrac{28}{5}\)

b) d(B ;d) = \(\dfrac{\left|3\cdot1-4\cdot\left(-2\right)-26\right|}{\sqrt{3^2+\left(-4\right)^2}}=-\dfrac{15}{5}=\dfrac{15}{5}=3\)

c) Dễ thấy điểm C nằm trên đường thẳng m : C ε m

30 tháng 3 2017

Áp dụng công thức:

d(M0 ;∆) =

a) d(M0 ;∆) = =

b) d(B ;d) = = = = 3

c) Dễ thấy điểm C nằm trên đường thẳng m : C ε m.

30 tháng 3 2017

a) 28÷5 b) 3

c)0

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Khoảng cách từ điểm A đến \({\Delta _1}\) là: \(d\left( {A,{\Delta _1}} \right) = \frac{{\left| {3.1 - 1.\left( { - 2} \right) + 4} \right|}}{{\sqrt {{3^2} + {{\left( { - 1} \right)}^2}} }} = \frac{9}{{\sqrt {10} }}\)

b) Phương trình tổng quát của đường thẳng \({\Delta _2}\)là: \(2x + y + 3 = 0\)

Khoảng cách từ điểm B đến \({\Delta _2}\) là: \(d\left( {A,{\Delta _2}} \right) = \frac{{\left| {2.\left( { - 3} \right) + 1.2 + 3} \right|}}{{\sqrt {{2^2} + {1^2}} }} = \frac{1}{{\sqrt 5 }}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Khoảng cách từ \(M(1;2)\) đến \(\Delta :3x - 4y + 12 = 0\) là:

\(d\left( {M,\Delta } \right) = \frac{{\left| {3.1 - 4.2 + 12} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{7}{5}\)

b) \(\Delta \) có phương trình tham số \(\Delta :\left\{ \begin{array}{l}x = t\\y =  - t\end{array} \right.\) nên có phương trình tổng quát là

\(\left( {x - 0} \right) + \left( {y - 0} \right) = 0 \Leftrightarrow x + y = 0\)

Suy ra khoảng cách từ điểm \(M(4;4)\) đến đường thẳng \(\Delta \) là

\(d\left( {M,\Delta } \right) = \frac{{\left| {1.4 + 1.4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2 \)

c) \(\Delta \) có phương trình tham số \(\Delta :\left\{ \begin{array}{l}x = t\\y = \frac{{ - 19}}{4}\end{array} \right.\) nên có phương trình tổng quát là

\(0.\left( {x - 0} \right) + \left( {y + \frac{{19}}{4}} \right) = 0 \Leftrightarrow y + \frac{{19}}{4} = 0\)

Suy ra khoảng cách từ điểm \(M(0;5)\) đến đường thẳng \(\Delta \) là

\(d\left( {M,\Delta } \right) = \frac{{\left| {5 + \frac{{19}}{4}} \right|}}{{\sqrt {{0^2} + {1^2}} }} = \frac{{39}}{4}\)

d) Khoảng cách từ \(M(0;0)\) đến \(\Delta :3x + 4y - 25 = 0\) là:

\(d\left( {M,\Delta } \right) = \frac{{\left| {3.0 + 4.0 - 25} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 5\)

10 tháng 4 2020

hello

10 tháng 4 2020

hello

6 tháng 4 2020

Tham khảo :

Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Ta có: \(\Delta \):\(\frac{x}{{ - 4}} + \frac{y}{2} = 1 \Leftrightarrow x - 2y + 4 = 0\)

Vậy khoảng cách từ O đến \(\Delta \) là: \(d\left( {O;\Delta } \right) = \frac{{\left| {1.0 - 2.0 + 4} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{4\sqrt 5 }}{5}\)

b) Lấy \(M\left( {0;1} \right) \in {\Delta _1}\)

Suy ra: \(d\left( {{\Delta _1},{\Delta _2}} \right) = d\left( {M,{\Delta _2}} \right) = \frac{{\left| {0 - 1 - 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \)

16 tháng 7 2018

Giải bài 8 trang 81 SGK hình học 10 | Giải toán lớp 10