K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

Đáp án C.

29 tháng 4 2016

Câu 1. 

A =  {15;16;17;18;19}  (0,25đ)

Câu 2. 

a.  2.(72 – 2.32) – 60

            = 2.(49 – 2.9) – 60              (0,25đ)

= 2.31 – 60              (0,25đ)

            = 62 – 60  = 2           (0,25đ)

b.   27.63 + 27.37

            = 27.(63 + 37)                  (0,25đ)

= 27.100          (0,25đ)

            = 2700          (0,25đ)

c. l-7l + (-8) + l-11l + 2

            = 7 + (-8) + 11 + 2        (0,5 đ)  

            = 12     (0,25đ)

d. 568 – 34 {5.l9 – ( 4-1)2l + 10}

        = 568 – 34 {5.[9-9] + 10}      (0,25đ)

=  568 – 34.10

= 568 – 340           (0,25đ)

      = 228               (0,25đ)

Câu 3. 

a)2x + 3 = 52 : 5

      2x + 3 =5              (0,25đ)

2x  = 5-3            (0,25đ)

2x   =2            (0,25đ)

x=1            (0,25đ)

b)

105 – ( x + 7) = 27 : 25

105 – ( x + 7) = 22             (0,25đ)

105 – ( x + 7) = 4            (0,25đ)

x + 7 = 105 – 4                (0,25đ)

x + 7 = 101                      (0,25đ)

x   =  101 – 7            (0,25đ)

x  = 94             (0,25đ)

Câu 4.

Gọi x (hs) là số học sinh lớp 6B phải tìm (30<x< 38, x)

Vì hs lớp 6B xếp 2,  hàng, 4 hàng, 8 hàng đều vừa đủ nên x⋮2; x⋮4; x8 hay x  ∈ BC{2;4;8}            (0,25đ)

Ta có: BCNN(2,4,8) = 8               (0,25đ)

⇒ BC(2,4,8) = B(8) ={0; 8; 16;24; 32; 40; …}

Mặt khác: 30<x< 38            (0,25đ)

Nên  x = 32

Vậy số học sinh lớp 6B là 32 học sinh    (0,25đ)

Câu 5. 

Khi M nằm giữa và cách đều hai điểm A và B     (0,5đ)

Vẽ được hình có điểm M là trung điểm của AB    (0,5đ)

Câu 6.a)

2015-12-24_155146

0,25đ

Điểm A nằm giữa O và B      (0,25đ)

Vì OA < OB  ( 4 < 8 )       (0,25đ)

Ta có: AO + AB = OB

3 + AB = 6        (0,25đ)

AB = 6 -3 = 3 cm          (0,25đ)

Vậy OA = AB = 3 cm         (0,25đ)

b)

Vì  A nằm giữa O, B và cách đều O và B ( OA = AB )          (0,25đ)

Nên A là trung điểm OB           (0,25đ)

29 tháng 4 2016

Chép trên mạng thôi  limdim

16 tháng 9 2018

Đáp án B

Cách giải:  A B → = - 1 ; - 2 ; 3

d:  x - 2 1 = y - 1 - 2 = z - 1 2  có 1 VTCP  v → 1 ; - 2 ; 2  là một VTCP của 
 
∆ là đường thẳng qua A, vuông góc với d => ∆ ⊂ (α) mặt phẳng qua A và vuông góc d

Phương trình mặt phẳng (α): 1(x – 3) – 2(y – 2) + 2(z – 1) = 0 ó x – 2y + 2z – 1 = 0

Khi đó,  khi và chỉ khi ∆ đi qua hình chiếu H của B lên (α)

*) Tìm tọa độ điểm H:

Đường thẳng BH đi qua B(2;0;4) và có VTCP là VTPT của (α) có phương trình:

=> 

<=>

∆ đi qua A(3;2;1), H(1;2;2) có VTCP  H A → = 2 ; 0 ; - 1 = u → 2 ; b ; c ; u → = 5

12 tháng 9 2016

ảnh đẹp đó nhưng hổng có liên quan

13 tháng 9 2016

ảnh chống chôi ~ 

Câu 1: (2,5 điểm)    Cho biểu thức:a) Rút gọn A.b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0c) Tìm x để A = 1/2d) Tìm x nguyên để A nguyên dương.Câu 2: (1điểm)a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.HD:          a < b => -3a > -3bCâu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận...
Đọc tiếp

Câu 1: (2,5 đim)    Cho biểu thức:

2016-04-27_171121

a) Rút gọn A.

b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0

c) Tìm x để A = 1/2
d) Tìm x nguyên để A nguyên dương.

Câu 2: (1điểm)

a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.

b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.

HD:          a < b => -3a > -3b

Câu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận tốc trung bình 15km/h. Lúc về, người đó chỉ đi với vận tốc trung bình 12km/h, nên thời gian về nhiều hơn thời gian đi là 45 phút. Tính độ dài quãng đường AB (bằng kilômet).

HD: Đổi 45’ = ¾ h, quãng đường AB = S => S = vt hay S/15 = S/12+3/4

2016-04-27_171454

Câu 4:  (1,0 điểm) Cho tam giác ABC có AD là phân giác trong của góc A. Tìm x trong hình vẽ sau với độ dài cho sẵn trong hình. 

2016-04-27_171602

 Câu 5: (1,5 điểm)

a. Viết công thức tính thể tích của hình hộp chữ nhật.

 b. Áp dụng: Tính thể tích của hình hộp chữ nhật với AA’ = 5cm, AB = 3cm, AD = 4cm (hình vẽ trên).

Câu 6:(2,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH.

a) Chứng minh: ∆ABC và ∆HBA đồng dạng với nhau.

 

  b) Chứng minh: AH2 = HB.HC.

  c) Tính độ dài các cạnh BC, AH.

9
29 tháng 4 2016

đây là nick phụ của bạn trần việt hà

29 tháng 4 2016

không phải

Câu1: Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37Câu2: có hay không 2 số tự nhiên x và y sao cho: 2002x + 5648y = 203 253 ?Câu3: từ 1 đến 1000 có bao nhiêu số chia hết cho 2, có bao nhiêu số chia hết cho 5 ?Câu4: tích ( n+2002 ).( n+2003 ) có chia hết cho 2 không? giải thích?Câu5: tìm x,y để số 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2Câu6: Viết số tự nhiên nhỏ nhất có 5 chữ số,...
Đọc tiếp

Câu1: Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37

Câu2: có hay không 2 số tự nhiên x và y sao cho: 2002x + 5648y = 203 253 ?

Câu3: từ 1 đến 1000 có bao nhiêu số chia hết cho 2, có bao nhiêu số chia hết cho 5 ?

Câu4: tích ( n+2002 ).( n+2003 ) có chia hết cho 2 không? giải thích?

Câu5: tìm x,y để số 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2

Câu6: Viết số tự nhiên nhỏ nhất có 5 chữ số, tận cùng bằng 6 và chia hết cho 9.

 Câu7: 

      a, Có bao nhiêu số có 2 chữ số chia hết cho 9 ?

      b, Tìm tổng các số có 2 chữ số chia hết cho 9 .

Câu8: chứng minh rằng:

      a, 102002 + 8 chia hết cho cả 9 và 2 .

      b, 102004 + 14 chia hết cho cả 2 và 3 .

Câu9: tìm tập hợp A các số tự nhiên x là ước của 75 và là bội của 3.

Câu10: tìm các số tự nhiên x,y sao cho: ( 2x + 1 ). ( y - 5 ) = 12

Câu11: số ababab là số nguyên tố hay hợp số ?

Câu12: chứng minh rằng số abcabc chia hết ít nhất cho 3 số nguyên tố.

Câu13: chứng minh rằng: 2001 . 2002 . 2003 . 2004 + 1 là hợp số.

Câu14: tướng Trần Hưng Đạo đánh tan 50 vạn quân nguyên năm abcd, biết : a là số tự nhiên nhỏ nhất khác 0 ; b là số nguyên tố nhỏ nhất; c là hợp số chẵn lớn nhất có một chữ số; d là số tự nhiên liền sau số nguyên tố lẻ nhỏ nhất. Vậy abcd là năm nào ?

Câu15: cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số ? vì sao ?

Câu16: tìm 3 số tự nhiên liên tiếp có tích bằng 19 656.

Câu17: tìm số tụ nhiên n biết rằng: 1 + 2 + 3 +...+ n = 1275

Câu18: tìm số chia và thương của một phép chia, biết số bị chia là 150 và số dư là 7.

Câu19: tìm giao của 2 tập hợp A và B :

      a, A là tập hợp các số tự nhiên chia hết cho 3. B là tập hợp các số tự nhiên chia hết cho 9.

      b, A là tập hợp các số nguyên tố. B là tâp hợp các hợp số.

      c, A là tập hợp các số nguyên tố bé hơn 10. B là tập hợp các chữ số lẻ.

                                                                   --------- Hết---------

                                                           GIÚP VỚI, MAI NỘP RỒI. 

11
15 tháng 2 2016

Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi. 


Ta có: 

xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37 

Lại có: 
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37 

Vậy yzx cũng phải chia hết cho 37 


Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.

18 tháng 2 2016

nhiều có làm sao hết 

6 tháng 3 2016

\(D=\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{14}}{-\frac{10}{7}+\frac{3}{28}}\)

\(=\frac{\frac{28}{42}+\frac{12}{42}-\frac{3}{42}}{-\frac{40}{28}+\frac{3}{28}}\)

\(=\frac{\frac{37}{42}}{-\frac{37}{28}}\)

\(=\frac{\frac{1}{42}}{-\frac{1}{28}}\) (rút gọn số chia và số bị chia cho 37)

\(=\frac{-28}{42}=-\frac{2}{3}\)

Vậy \(D=-\frac{2}{3}\)

17 tháng 2 2016

Bài 2:

a) Ta có:

\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)

Vậy \(S\) \(\text{⋮}\) \(-20\)

17 tháng 2 2016

Bài 1:

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)

\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)

\(=\left(-12\right).m^2.3.n^3\)

\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)

Xét: \(m^2\ge0\) với V m

3>0 nên \(m^2.3\ge0\) với V m

Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)

-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)

Vậy với n<0 và mọi m thì \(A\ge0\)

 

26 tháng 3 2018

Đáp án A

Goi (P) là mặt phẳng đi qua A vuông vởi với giá của u →

⇒ P : 6 x + 1 − 2 y − 2 − 3 z + 3 = 0 ⇔ P : 6 x − 2 y − 3 z = − 1

 Gọi   B = P ∩ d ⇒ B 4 + 3 t ; 1 + 2 t ; − 2 − 5 t

B ∈ P ⇒ 6. 4 + 3 t − 2 1 + 2 t − 3 − 2 − 5 t = − 1 ⇔ t = − 1 ⇒ B 1 ; − 1 ; 3

Đường thẳng   Δ đi qua A − 1 ; 2 ; − 3  và  B 1 ; − 1 ; 3   có vtcp  u Δ → = A B → = 2 ; − 3 ; 6

⇒ Δ : x − 1 2 = y + 1 − 3 = z − 3 6