Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A bạn ah.
C thay đổi để Uc max thì U(LR) \(\perp\) với U.
ULU(LC)UU(LR)UCUR
làm hộ mk bài này nx:
Một hiệu điện thế xoay chiều f=50HZ thiết lập giữa hai đầu của một đoạn mach điện gồm R,L,C với L\(=\frac{1}{\pi}\left(H\right)\), C\(=\frac{10^{-4}}{2\pi}\left(F\right)\). Người ta muốn ghép tụ điện có điện dung C' vào mạch điện nói trên để cho cường độ hiệu dụng trong mạch đạt giá trị cực đại thì C' phải bằng bao nhiêu và được ghép như thế nào?
A.\(\frac{10^{-4}}{2\pi}\) (F) ghép nối tiếp B.\(\frac{10^{-4}}{2\pi}\) (F) ghép song song
C.\(\frac{10^{-4}}{\pi}\) (F) ghép song song D.\(\frac{10^{-4}}{\pi}\) (F) ghép nối tiếp
Khi tăng điện dung nên 2,5 lần thì dung kháng giảm 2,5 lần. Cường độ dòng trễ pha hơn hiệu điện thế \(\pi\text{/}4\) nên
\(Z_L-\frac{Z_C}{2,5}=R\)
Trường hợp đầu tiên thì thay đổi C để hiệu điện thế trên C cực đại thì
\(Z_LZ_C=R^2+Z^2_L\)
\(Z_LZ_C=\left(Z_L-\frac{Z_C}{2,5}\right)^2+Z^2_L\)
Giải phương trình bậc 2 ta được
\(Z_C=\frac{5}{4}Z_L\) hoặc \(Z_C=10Z_L\) (loại vì Zl-Zc/2.5=R<0)
\(R=\frac{Z_L}{2}\)
Vẽ giản đồ vecto ta được \(U\) vuông góc với \(U_{RL}\) còn \(U_C\) ứng với cạch huyền
Góc hợp bởi U và I bằng với góc hợp bởi \(U_L\) và \(U_{LR}\)
\(\tan\alpha=\frac{R}{Z_L}=0,5\)
\(\sin\alpha=1\text{/}\sqrt{5}\)
\(U=U_C\sin\alpha=100V\)
\(U_o=U\sqrt{2}=100\sqrt{2}V\)
chọn C
\(Z_L=\omega L=100\Omega\)
C thay đổi để \(U_{Cmax}\) khi \(Z_C=\frac{R^2+Z_L^2}{Z_L}=\frac{100^2+100^2}{100}=200\Omega\)
\(\Rightarrow C=\frac{1}{Z_C\omega}=\frac{10^{-4}}{2\pi}\)(F)
Bài này rất cơ bản mà bạn.
a) \(Z_L=\omega.L=30\Omega\)
\(Z_C=\dfrac{1}{\omega C}=60\Omega\)
Tổng trở: \(Z=\sqrt{R^2+(Z_L-Z_C)^2}=\sqrt{40^2+(60-30)^2}=50\Omega\)
b) Điện áp hiệu dụng của mạch là: \(U=\dfrac{U_0}{\sqrt 2}=110(V)\)
Cường độ hiệu dụng: \(I=\dfrac{U}{Z}=\dfrac{110}{50}=2,2A\)
c) Công suất tiêu thụ của đoạn mạch: \(P=I^2.R=2,2^2.40=193,6W\)
* Ban đầu: \(\varphi_{u/i}=-\dfrac{\pi}{4}-(-\dfrac{\pi}{2})=\dfrac{\pi}{4}(rad)\)
\(\Rightarrow \tan\varphi = \dfrac{-Z_C}{R}=-1\Rightarrow Z_C= R\)
Tổng trở của mạch: \(Z=\sqrt{R^2+Z_C^2}=R\sqrt 2\)
* Khi mắc nối tiếp vào mạch tụ thứ 2 có điện dung bằng điện dung đã cho thì: \(Z_C'=2Z_C=2R\)
Tổng trở: \(Z'=\sqrt{R^2+Z_C'^2}=\sqrt{R^2+(2R)^2}=R\sqrt 5\)
\(\Rightarrow \dfrac{I'}{I}=\dfrac{Z}{Z'}=\dfrac{\sqrt 2}{\sqrt 5}\)
\(\Rightarrow I'=0,63I\)
\(\Rightarrow I_0'=0,63I_0\)
Độ lệch pha giữa u và i: \(\tan\varphi = \dfrac{-Z_C'}{R}=2\)
\(\Rightarrow \varphi{_{u/i}} = -0,352\pi(rad)\Rightarrow \varphi{_{i/u}} = 0,352\pi(rad)\)
\(\Rightarrow \varphi i'=\varphi _u+0,352\pi=-0,5\pi+0,352\pi=-0,147\pi\)(rad)
Vậy biểu thức của dòng điện là:
\(i=0,63I_0\cos(\omega t -0,147\pi) (A)\)
Chọn A.
Đăng cái lý thuyết làm gì thế