Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của (n;n+1)
\(\Rightarrow\)n chia hết cho d; (n+1) chia hết cho d
\(\Rightarrow\)(n+1) - n chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow d\in\){1;-1}
Vậy \(\frac{n}{n+1}\)là phân số tối giản
gọi d là ƯCLN{n;n+1}
ta có: n chia hết ; n+1 chia hết cho d (1)
=> n+1-n chia hết cho d
=> 1 chia hết cho d (2)
từ (1) và(2)=> d= +1 và -1
vậy \(\frac{n}{n+1}\)là phân số tối giản
Ta cần c/m: \(\left(n;n+1\right)=1\)
Thật vậy,đặt \(\left(n;n+1\right)=d\).Ta có:
\(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow n+1-n⋮d\Leftrightarrow1⋮d\)
Suy ra \(d=1\).Vậy \(\frac{n}{n+1}\) là phân số tối giản với mọi n thuộc Z,n khác 0. (đpcm)
Gọi d là ƯCLN\((n,n+1)\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy : ......
Gọi d là ƯC(n;n+1)
Khi đó: n chia hết co d n+1 chia hết cho d
=> (n+1)-n chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy n/n+1 là phân số tối giản
Gọi d là ƯCLN của n, n+1
=>n:d;n+1;d
=>(n+1)-n;d
=>1;d
=>n/n+1 là phân số tối giản
a, Bạn tự tính được. Tự làm nha.
b, Gọi ƯCLN(12n+1; 30n+1) là d. Ta có:
12n+1 chia hết cho d => 60n+5 chia hết cho d
30n+1 chia hết cho d => 60n+2 chia hết cho d
=> 60n+5-(60n+2) chia hết cho d
=> 3 chia hết cho d
=> d thuộc ước của 3
Vì 12 chia hết cho 3=> 12n chia hết cho d=> 12n+1 chia 3 dư 1=> 12n+1 không chia hết cho 3
=> d khác 3
=> d=1
=> ƯCLN(12n+1; 30n+1) = 1
=>\(\frac{12n+1}{30n+1}\)là phân số tối giản (đpcm)
Gọi d là ƯCLN(n, n+1)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow n+1-n⋮d\)
\(\Rightarrow\left(n-n\right)+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{n}{n+1}\)là phân số tối giản
Gọi d là ƯC(n;n+1) (1)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow n+1-n⋮d\)
\(\Rightarrow\left(n-n\right)+1⋮d\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowƯC\left(n;n+1\right)=\left\{1;-1\right\}\)
=> \(\frac{n}{n+1}\) là phân số tối giản với mọi n thuộc N*
th1 n=2\(A=\frac{12.2+1}{30.2+1}=\frac{25}{61}\)
th2 n=5 \(A=\frac{12.5+1}{30.5+1}=\frac{61}{151}\)
Gọi ƯCLN(12n+1,30n+1) là d đk d thuộc N*
ta có vì 12n+1 chia hết cho d suy ra 60n+5 chia hết cho d
30n+1 chia hết cho d suy ra 60n+2 chia hết cho d
suy ra 60n+5-(60n+2) chia hết cho d
3 chia hết cho d
d thuộc ước của 3
Ư(3)={1;3}
ta có vì 60n+5 ko thể chia hết cho 3
60n+2 ko chia hết cho 3
suy ra d=1
Vì ƯCLN(12n+1,30n+1)=1 suy ra đây là hai số nguyên tố cùng nhau và A là tối giản
Gọi UCLN(n,n+1)=d
=> n và n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=> 1 chia hết cho d
=>d=1 hoặc -1
=> (n,n+1)=1(hay nguyên tố cùng nhau)
=> n/(n+1) luôn tối giản vs mọi n thuộc N, n khác 0 và khác -1(để mẫu khác 0 thì phân thức đc xác định);
Vậy....mọi n với...
Always