Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)
\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)
Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)
Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
f(x)= (x-3). Q(x)+2 moi X
f(x)=(x+4).H(x)+9 moi X
=>f(3)= 2
f( -4)= 9
f(x)= (x^2+x-12).(x^2+3)+ ax +b
=(x-3)(x+4). (x^2+3) +ax+b
=>f(3)= 3a+b=2
f(-4)=b -4a=9
=>a= -1; b=5
=> f(x)=(x^2+x-12)(x^2+3)-x+5
= x^4+x^3-9x^2+2x-31
# mui #
Vì f(x) chia cho x+2 dư -4 nên f(x) + 4 chia hết cho x+2
Theo định lí Bezout thì f(-2)+4 = 0
Suy ra f(-2) = -4 (*)
Tương tự ta cũng được f(3) = 24 (**)
Vì f(x) chia cho (x-3)(x+2) được thương là x2+4 và còn dư nên
f(x) = (x-3)(x+2)(x2+4) + ax+b (***)
Từ (***) và (*) suy ra f(-2) = -2a+b = -4
Từ (***) và (**) suy ra f(3) = 3a+b = 21
Suy ra a = 5 và b = 6
Thay vào (***) rồi khai triển ta được hạng tử tự do là -18
Đảm bảo đúng 100% mình làm bài này rồi