Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a chia hết cho 2 nhưng ko chia hết cho 4
b) b chia hết cho 3,4 nhưng ko chia hết cho 18
a) Chia hết cho 2
ko chia hết cho 4
b)
Chia hết cho 3, 4, 18
Ta có: a chia 18 dư 2
Đặt \(a=18k+12\left(k\in N\right)\)
\(a=18k+12=3\left(6k+4\right)⋮3\)
\(a=18k+12=9\left(2k+1\right)+3⋮̸9\)
\(a=18k+12=3\left(6k+4\right)⋮3\)
\(a=18k+12=18k+9+3=9\left(2k+1\right)+3⋮̸9\)
a chia 18 dư 12 => a = 18.b + 12
Ta thấy 18 chia hết cho 3 => 18b chia hết cho 3
12 chia hết cho 3
=> 18b + 12 chia hết cho 3 hay a chia hết cho 3
Ta thấy 18 chia hết cho 9 => 18b chia hết cho 9
12 ko chia hết cho 9
=> 18b + 12 ko chia hết cho 9 hay a ko chia hết cho 9
a chia 18 dư 12 => a = 18.b + 12
Ta thấy 18 chia hết cho 3 => 18b chia hết cho 3
12 chia hết cho 3
=> 18b + 12 chia hết cho 3 hay a chia hết cho 3
Ta thấy 18 chia hết cho 9 => 18b chia hết cho 9
12 ko chia hết cho 9
=> 18b + 12 ko chia hết cho 9 hay a ko chia hết cho 9
a : 18 = b dư 12
=> a = 18b + 12 = 6 (3b + 2)
=> a chia hết cho 6
=> a chia hết cho 2 và 3
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Cho k là thương của \(a:12\) \(\left(k\in N\right)\), ta có \(a=12k+18\)
\(-\) \(12k⋮4\) (vì \(12⋮4\))
\(-\) \(18⋮̸4\) \(\Rightarrow a⋮̸4\)
\(-\) \(12k⋮6\) (vì \(12⋮6\))
\(-\) \(18⋮6\) \(\Rightarrow a⋮6\)
Bài giải:
Gọi q là thương trong phéo chia a cho 12, ta có a = 12q + 8. Vì 12 = 4 . 3 nên 12q = 4 . 3q. Do đó 12q chia hết cho 4; hơn nữa 8 cũng chia hết cho 4. Vậy a chia hết cho 4.
Lập luận tương tự ta đi tới kết luận; a không chia hết cho 6.
vì a : 18 dư 9 nên a có dạng: a = 18k + 9 = 9.(2k + 1)
9⋮ 3 ⇒ a ⋮ 3;
a = 18k + 9 = 6.(3k + 1) + 3 vì 6.(3k + 1) ⋮ 6 và 3 không chia hết cho 6 nên a không chia hết cho 6
gấp mn