K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

Dư trong phép chia cho  \(x^2-x=x\left(x-1\right)\)  là hằng số.

Gọi thương của phép chia là  \(Q\left(x\right)\)  và dư là  \(r\), với mọi  \(x\)  ta có:

\(f\left(x\right)=\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}=\left(x^2-x\right).Q\left(x\right)+\left(ax+b\right)\)  

Với  \(x=0\)  thì  \(f\left(0\right)=\left(0^2+0-1\right)^{10}+\left(0^2-0+1\right)^{10}=\left(0^2-0\right).Q\left(0\right)+r\)

Khi đó,  \(2=r\)

Với  \(x=1\)  thì  \(f\left(1\right)=\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)^{10}=\left(1^2-1\right).Q\left(1\right)+r\)

Do đó,   \(2=r\)

Vậy,  số dư của phép chia là  \(2\)

2 tháng 3 2017

\(x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

áp dụng định lí bezout :

thay x=0 vào \(f\left(0\right)=\left(0+1-1\right)^{10}+\left(0-0+1\right)^{10}=2\)

thay x=1 vào \(f\left(1\right)=\left(1+1-1\right)^{10}+\left(1-1+1\right)^{10}=2\)

\(\Rightarrow f\left(0\right)=f\left(1\right)\)

\(\Rightarrow\)so du la 2

28 tháng 10 2020

600000000<1

28 tháng 10 2020

Cho mình xin cách làm đi

9 tháng 3 2016

Ban dung phuong phap the ban cho x= 1 di roi the vao ta duoc so du la 0 roi the tiep x=x+1=1+1=2 tiep tuc duoc du =0 vay =>>>>>voi moi x thi dc so du luon bang 0