Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Giải phương trình: s inx = cos x ⇒ x = π 4 (vì 0 ≤ x ≤ π )
S = ∫ 0 π s inx − cos x d x = 2 2
Tại điểm x = - π hàm số không xác định nên hàm số gián đoạn.
Ta có
lim x → 0 - f x = lim x → 0 - 2 sin x x = 2 lim x → 0 + f x = lim x → 0 + x + 2 = 2 = f 0
Do lim x → 0 + f(x) = lim x → 0 - f(x) = f(0) nên hàm số liên tục tại điểm x = 0.
Vậy hàm số chỉ gián đoạn tại điểm x = - π
Đáp án A
Có f ( π ) - f ( 0 ) = ∫ 0 π f ' ( x ) dx
f ( π ) = f ( 0 ) + ∫ 0 π f ' ( x ) dx = π + 1
Chọn đáp án C.
Ta có
S 1 = ∫ 0 k e x sin x d x ; S 2 = ∫ k π e x sin x d x S = S 1 + S 2 = ∫ 0 π e x sin x d x
2 S 1 + 2 S 2 - 1 = 2 S 1 - 1 2
⇔ S 2 = 2 S 1 2 - 2 S 1 + 1 - S = 0 ⇔ 2 ∫ 0 k e x sin x d x 2 - 2 ∫ 0 k e x sin x d x + 1 - ∫ 0 k e x sin x d x = 0
Tính toán trực tiếp qua các đáp án ta thấy PT trên đúng với k = π 2
Đáp án cần chọn là B
Đáp án A
Ta có cos x = 0 ⇔ x = π 2 + k π k ∈ ℤ