K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2019

\(\left(\frac{x}{2}+4.x^{-1}\right)^{18}\)

Số hạng tông quát trong khai triển:

\(C_{18}^k.\left(\frac{x}{2}\right)^k.\left(4x^{-1}\right)^{18-k}=C_{18}^k.\left(\frac{1}{2}\right)^k.4^{18-k}.x^{2k-18}\)

Số hạng ko chứa \(x\Rightarrow2k-18=0\Rightarrow k=9\)

Hệ số: \(C_{18}^9.\left(\frac{1}{2}\right)^9.4^9=2^9.C_{18}^9\)

25 tháng 6 2018

19 tháng 2 2017

15 tháng 9 2017

Câu 2 đề thiếu rồi kìa. Cái cuối cùng là tổ hợp chập bao nhiêu của 2n + 1 thế???

15 tháng 9 2017

1/ Vì M thuộc \(d_3\) nên ta có tọa độ của M là: \(M\left(2a;a\right)\)

Khoản cách từ M đến \(d_1\) là:

\(d\left(M,d_1\right)=\dfrac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3a+3\right|}{\sqrt{2}}\)

Khoản cách từ M đến \(d_2\) là:

\(d\left(M,d_2\right)=\dfrac{\left|2a-a-4\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|a-4\right|}{\sqrt{2}}\)

Theo đề bài ta có:

\(\dfrac{\left|3a+3\right|}{\sqrt{2}}=2.\dfrac{\left|a-4\right|}{\sqrt{2}}\)

\(\Leftrightarrow\left|3a+3\right|=2.\left|a-4\right|\)

\(\Leftrightarrow a^2+10a-11=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)

26 tháng 2 2019

a) F(x) = 1 -  cos x 2 + π 4

d) K(x) = 2 1 - 1 1 + tan x 2

NV
30 tháng 3 2019

\(I=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{sin^2x.cosx+2sin2x}{\left(f\left(sinx\right)\right)^2}dx=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{\left(sin^2x+4sinx\right).cosx}{\left(f\left(sinx\right)\right)^2}dx\)

Đặt \(sinx=t\Rightarrow cosx.dx=dt;\left\{{}\begin{matrix}x=\frac{\pi}{6}\Rightarrow t=\frac{1}{2}\\x=\frac{\pi}{3}\Rightarrow t=\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}\frac{\left(t^2+4t\right)}{f^2\left(t\right)}dt=\int\limits^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}\frac{\left(x^2+4x\right)}{f^2\left(x\right)}dx\)

Lại có:

\(x+x.f'\left(x\right)=2f\left(x\right)-4\Leftrightarrow x+4=2f\left(x\right)-x.f'\left(x\right)\)

\(\Leftrightarrow x^2+4x=2x.f\left(x\right)-x^2.f'\left(x\right)\)

\(\Leftrightarrow\frac{x^2+4x}{f^2\left(x\right)}=\frac{2x.f\left(x\right)-x^2.f'\left(x\right)}{f^2\left(x\right)}=\left(\frac{x^2}{f\left(x\right)}\right)'\)

\(\Rightarrow I=\int\limits^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}\left(\frac{x^2}{f\left(x\right)}\right)'dx=\frac{x^2}{f\left(x\right)}|^{\frac{\sqrt{3}}{2}}_{\frac{1}{2}}=\frac{\left(\frac{\sqrt{3}}{2}\right)^2}{f\left(\frac{\sqrt{3}}{2}\right)}-\frac{\left(\frac{1}{2}\right)^2}{f\left(\frac{1}{2}\right)}=\frac{3}{4b}-\frac{1}{4a}\)