Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x^2-2y\right)^3=27x^6-54x^4y+36x^2y^2-8y^3\)
a) \(\left(\dfrac{x^2}{2}+y^2\right)^2\)
\(=\left(\dfrac{1}{2}x^2+y^2\right)^2\)
\(=\left(\dfrac{1}{2}x^2\right)^2+2\cdot\dfrac{1}{2}x^2\cdot y^2+\left(y^2\right)^2\)
\(=\dfrac{1}{4}x^4+x^2y^2+y^4\)
b) \(\left(\dfrac{4}{5}x^2-\dfrac{2}{3}y\right)^2\)
\(=\left(\dfrac{4}{5}x^2\right)^2-2\cdot\dfrac{4}{5}x^2\cdot\dfrac{2}{3}y+\left(\dfrac{2}{3}y\right)^2\)
\(=\dfrac{16}{25}x^4-\dfrac{16}{15}x^2y+\dfrac{4}{9}y^2\)
c) \(\left(2x+\dfrac{1}{2}\right)\left(2x-\dfrac{1}{2}\right)\)
\(=\left(2x\right)^2-\left(\dfrac{1}{2}\right)^2\)
\(=4x^2-\dfrac{1}{4}\)
a: (1/2x^2+y^2)^2
=(1/2x^2)^2+2*1/2x^2*y^2+y^4
=1/4x^4+x^2y^2+y^4
b: (4/5x^2-2/3y)^2
=(4/5x^2)^2-2*4/5x^2*2/3y+4/9y^2
=16/25x^4-16/15x^2y+4/9y^2
c: =(2x)^2-(1/2)^2
=4x^2-1/4
1.
a) \({\left( {x + 3} \right)^3} = {x^3} + 3.{x^2}.3 + 3.x{.3^2} + {3^3} = {x^3} + 9{x^2} + 27x + 27\)
b) \({\left( {x + 2y} \right)^3} = {x^3} + 3.{x^2}.2y + 3.x.{\left( {2y} \right)^2} + {\left( {3y} \right)^3} = {x^3} + 6{x^2}y + 12x{y^2} + 27{y^3}\)
2.
\(\begin{array}{l}{\left( {2x + y} \right)^3} - 8{x^3} - {y^3} = {\left( {2x} \right)^3} + 3.{\left( {2x} \right)^2}.y + 3.2x.{y^2} + {y^3} - 8{x^3} - {y^3}\\ = 8{x^3} + 12{x^2}y + 6x{y^2} + {y^3} - 8{x^3} - {y^3}\\ = \left( {8{x^3} - 8{x^3}} \right) + 12{x^2}y + 6x{y^2} + \left( {{y^3} - {y^3}} \right)\\ = 12{x^2}y + 6x{y^2}\end{array}\)
\(\left(2x+1\right)\left(x+3\right)+\left(x+1\right)^2\left(x+2\right)+\left(x+5\right)\left(x+1\right)\)
\(=2x^2+6x+x+3+x^3+2x^2+x+2x^2+4x+2+x^2+x+5x+5\)
\(=x^3+7x^2+18x+10\)
đúng ko nhỉ?
tham khảo : KHAI TRIỂN RÚT GỌN ĐA THỨC BẰNG CASIO (1LINK DUY NHẤT) - YouTube
a,\(\left(x^2+2xy\right)^3=\left(x^2\right)^3+3.\left(x^2\right)^2.2xy+3.\left(2xy\right)^2.x^2+\left(2xy\right)^3\)
\(=x^6+6x^5y+12x^4y^2+8x^3y^3\)
b,\(\left(3x^2-2y\right)^3=\left(3x^2\right)^3-3.\left(3x^2\right)^2.2y+3.\left(2y\right)^2.3x^2-\left(2y\right)^3\)
\(=27x^6-54x^4y+36y^2x^2-8y^3\)
c,\(\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)
\(\left(2x^2-y\right)^3\)
\(=8x^6-12x^4y+6x^2y^2-y^3\)
Tổng các hệ số là :
\(8+\left(-12\right)+6+\left(-1\right)\)
\(=-4+6-1\)
\(=2-1=1\)
a) \(\left(x^2+2xy\right)^3\)
\(=\left(x^2\right)^3+3\left(x^2\right)^22xy+3x^2\left(2xy\right)^2+\left(2xy\right)^3\)
\(=x^6+6x^5y+12x^4y^2+8x^3y^3\)
b) \(\left(3x^2-2y\right)^3\)
\(=\left(3x^2\right)^3-3\left(3x^2\right)^22y+3.3x^2\left(2y\right)^2-\left(2y\right)^3\)
\(=27x^6-54x^4y+36x^2y^2-8y^3\)
c) \(\left(2x^3-y^2\right)^3\)
\(=\left(2x^3\right)^3-3\left(2x^3\right)^2y^2+3.2x^3\left(y^2\right)^2-\left(y^2\right)^3\)
\(=8x^9-12x^6y^2+6x^3y^4-y^6.\)
\(\left(2x-y\right)^3=8x^3-12x^2y+6xy^2-y^3.\)