Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x+y+3\right)^2=4x^2+y^2+9+4xy+12x+6y\)
\(b,\left(x-2y+1\right)^2=x^2+4y^2+1-4xy+2x-4y\)
\(c,\left(x^2-2xy^2-3\right)^2=x^4+2x^2y^4+9-4x^3y^2-6x^2+12xy^2\)
a, \(\left(2x-3y\right)^3=8x^3-36x^2y+54xy^2-27y^3\)
b, \(\left(2x+\dfrac{9}{2}\right)^3=8x^3-54x^2+121,5x-91,125\)
c, \(\left(x+2y\right)^3+\left(x-2y\right)^3=x^3+6x^2y+12xy^2+8y^3+x^3-6x^2y+12xy^2-8y^3\)
\(=2x^3+24xy^3\)
d, \(\left(2x+1\right)^3-\left(x-1\right)^3-7\left(x+1\right)^3\)
\(=8x^3+12x^2+6x+1-\left(x^3-3x^2+3x-1\right)-7\left(x^3+3x^2+3x+1\right)\)
\(=8x^3+12x^2+6x+1-x^3+3x^2-3x+1-7x^3-21x^2-21x-7\)
\(=-6x^2-18x-5\)
Chúc bạn học tốt!!!
Giải:
a) \(\left(2x+y+3\right)^2\)
\(=\left(2x+y\right)^2+2.3\left(2x+y\right)+3^2\)
\(=\left(2x\right)^2+2.2x.y+y^2+2.3\left(2x+y\right)+3^2\)
\(=4x^2+4xy+y^2+12x+6y+9\)
Vậy ...
b) \(\left(x-2y+1\right)^2\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1^2\)
\(=x^2-2.x.2y+\left(2y\right)^2+2x-4y+1^2\)
\(=x^2-4xy+4y^2+2x-4y+1\)
Vậy ...
c) \(\left(x^2-2xy^2-3\right)^2\)
\(=\left(x^2-2xy^2\right)^2+2.3.\left(x^2-2xy^2\right)-3^2\)
\(=\left(x^2\right)^2-2.x^2.2xy^2+\left(2xy^2\right)^2+2.3.\left(x^2-2xy^2\right)-3^2\)
\(=x^4-4x^3y^2+4x^2y^4+6x^2-12xy^2-9\)
Vậy ...
a,\(\left(2x-1\right)\left(4x^2+2x+1\right)=\left(2x-1\right)\left[\left(2x\right)^2+2x.1+1^2\right]\)
\(=\left(2x\right)^3-1=8x^3-1\)
b,\(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)
\(=x^2+2.x.2y+\left(2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)
`a)(2x-1)(4x^2+2x+1)`
`=(2x-1)[(2x)^2+2x.1+1^2]`
`=(2x)^3-1^3`
`=8x^3-1`
Áp dụng HĐT:`A^3-B^3=(A-B)(A^2+AB+B^2)`
`b)(x+2y+z)(x+2y-z)`
`=[(x+2y)+z][(x+2y)-z]`
`=(x+2y)^2-z^2`
`=x^2+2.x.2y+(2y)^2-z^2`
`=x^2+4xy+4y^2-z^2`
Áp dụng HĐT:`A^2-B^2=(A+B)(A-B)`
`(A+B)^2=A^2+2AB+B^2`
a) \(\left(2x^2-1\right)^2\)
\(=4x^4-4x^2+1\)
b)\(\left(\dfrac{1}{2}x+3y^2\right)^2\)
\(=\dfrac{1}{4}x^2+3xy^2+9y^4\)
a,\(\left(x^2+2xy\right)^3=\left(x^2\right)^3+3.\left(x^2\right)^2.2xy+3.\left(2xy\right)^2.x^2+\left(2xy\right)^3\)
\(=x^6+6x^5y+12x^4y^2+8x^3y^3\)
b,\(\left(3x^2-2y\right)^3=\left(3x^2\right)^3-3.\left(3x^2\right)^2.2y+3.\left(2y\right)^2.3x^2-\left(2y\right)^3\)
\(=27x^6-54x^4y+36y^2x^2-8y^3\)
c,\(\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)
a) \(\left(2x^2-1\right)^2=\left(2x^2\right)^2-2.2x^2.1+1^2\)
\(=4x^4-4x^2+1\).
b) \(\left(\frac{1}{2}x+3y^2\right)^2=\left(\frac{1}{2}x\right)^2+2.\frac{1}{2}x.3y^2+\left(3y^2\right)^2\)
\(=\frac{1}{4}x^2+3y^2x+9y^4\)
Chúc bn hc tốt!
a: \(B=\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)\)
\(=x^2y+\dfrac{1}{4}x^2+y^2+\dfrac{1}{4}y+x^2y^2+\dfrac{3}{4}y+\dfrac{1}{4}\)
\(=x^2y+x^2y^2+y^2+y+\dfrac{1}{4}x^2+\dfrac{1}{4}\)
\(=y\left(x^2+1\right)+y^2\left(x^2+1\right)+\dfrac{1}{4}\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(y+\dfrac{1}{2}\right)^2\)
\(C=x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\)
\(=x^2y^2+1+x^2-x^2y-y+y^2\)
\(=x^2y^2-y+x^2+y^2-x^2y+1\)
\(=y^2\left(x^2+1\right)-y\left(x^2+1\right)+x^2+1\)
\(=\left(x^2+1\right)\left(y^2-y+1\right)\)
=>\(A=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)
b: \(=\dfrac{y^2-y+1+2y-\dfrac{3}{4}}{y^2-y+1}=1+\dfrac{2y-\dfrac{3}{4}}{y^2-y+1}>=1\)
Dấu = xảy ra khi y=3/8
a: \(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right):\dfrac{x+y}{xy}\)
\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\cdot\dfrac{xy}{x+y}\)
\(=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)
b: \(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x-y}{2y}\)
\(=\dfrac{4xy+4y^2}{2\left(x+y\right)}\cdot\dfrac{1}{2y}=\dfrac{4y\left(x+y\right)}{4y\left(x+y\right)}=1\)
\(2\left(\dfrac{1}{2}x^2+y\right)\left(x^2-2y\right)\)
\(=\left(x^2+2y\right)\left(x^2-2y\right)\)
\(=\left(x^2\right)^2-\left(2y\right)^2\)
\(=x^4-4y^2\)