Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 2018.2020 + 2019.2021
= (2020 - 2).2020 + 2019.(2019 + 2)
= 20202 - 2.2020 + 20192 + 2.2019
= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B
=> A = B
b) Ta có B = 964 - 1= (932)2 - 12
= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1)
(932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80
mà A = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10
=> A < B
c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)
=> A < B
d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)
=> A < B
Cách 3 chưa đọc, nhưng cả cách 1 lẫn cách 2 đều sai. Sai lầm là ko chú ý điều kiện \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow\left|t\right|\ge2\)
\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)=t^2-3t-2\)
- Nếu \(t\le-2\Rightarrow P=\left(t+2\right)\left(t-5\right)+8\ge8\)
- Nếu \(t\ge2\Rightarrow P=\left(t-2\right)\left(t-1\right)-4\ge-4\)
So sánh 2 trường hợp ta kết luận được \(P_{min}=-4\) khi \(t=2\) hay \(x=y\)
1)\(25x^2y^4+30xy^2z+9z^2=\left(5xy^2+3z\right)^2\)
\(\dfrac{16}{9}x^2+4xyz^2+\dfrac{9}{4}y^2z^4=\left(\dfrac{4}{3}x+\dfrac{3}{2}yz^2\right)^2\)
2)
a)\(\dfrac{9}{25}x^2+\dfrac{12}{35}xy+\dfrac{4}{49}y^2=\left(\dfrac{3}{5}x+\dfrac{2}{7}y\right)^2=\left(\dfrac{3}{5}.5+\dfrac{2}{7}.\left(-7\right)\right)^2=\left(3-2\right)^2=1\)b)\(\dfrac{25}{16}u^4v^2+\dfrac{1}{5}u^2v^3+\dfrac{4}{625}v^4\)
\(=\left(\dfrac{5}{4}u^2v+\dfrac{2}{25}v^2\right)^2=\left(\dfrac{5}{4}.\dfrac{4}{25}.\left(-5\right)+\dfrac{2}{25}.\left(-5\right)^2\right)^2\)
\(=\left(-1+2\right)^2=1\)
\(\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\)
\(\left(x-2y\right)^2-4\left(x-2y\right)+4=\left(x-2y-2\right)^2\)
\(\left(a^2+1\right)^2-6\left(a^2+1\right)+9=\left(a^2+1-3\right)^2=\left(a^2-2\right)^2\)
\(\left(x+y\right)^2+\left(x+y\right)x+\frac{1}{4}x^2=\left(x+y+\frac{1}{2}x\right)^2=\left(\frac{3}{2}x+y\right)^2\)
\(16x^4-9x^2=x^2\left(16x^2-9\right)=x^2\left(4x-4\right)\left(4x+3\right)\)
\(a^2-b^4=\left(a-b^2\right)\left(a+b^2\right)\)
(x + 2y)2 - 16
= (x + 2y)2 - 42
= (x + 2y - 4).(x + 2y + 4)
(x - 2y)2 - 4.(x - 2y) + 4
= (x - 2y)2 - 2.(x - 2y).2 + 22
= (x - 2y - 2)2
(a2 + 1)2 - 6.(a2 + 1) + 9
= (a2 + 1)2 - 2.(a2 + 1).3 + 32
= (a2 + 1 - 3)2
= (a2 - 2)2
(x + y)2 + (x + y).x + 1/4.x2
= (x + y)2 + 2.(x + y).1/2.x + (1/2.x)2
= (x + y + 1/2.x)2
= (3/2.x + y)2
16x4 - 9x2
= (4x2)2 - (3x)2
= (4x2 - 3x).(4x2 + 3x)
a2 - b4
= a2 - (b2)2
= (a - b2).(a + b2)
Giải:
a) \(\left(x-5\right)^2-16\)
\(=\left(x-5-4\right)\left(x-5+4\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
b) \(25-\left(3-x\right)^2\)
\(=\left(5-3+x\right)\left(5+3-x\right)\)
\(=\left(2+x\right)\left(8-x\right)\)
c) \(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left[7\left(y-4\right)-3\left(y+2\right)\right]\left[7\left(y-4\right)+3\left(y+2\right)\right]\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
d) \(11x+11y-x^2-xy\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(11-x\right)\left(x+y\right)\)
e) \(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-8\right)\left(x-y\right)\)
Vậy ...
\(\left(x-5\right)^2-16\)
\(=\left(x-5\right)^2-4^2\)
\(=\left(x-5-4\right)\left(x-5+4\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
\(25-\left(3-x\right)^2\)
\(=5^2-\left(3-x\right)^2\)
\(=\left(5+3-x\right)\left(5-3+x\right)\)
\(=\left(8-x\right)\left(2+x\right)\)
\(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=7^2\left(y-4\right)^2-3^2\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
\(1.\)
\(a.\)
\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=x-1\)
\(b.\)
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2y}{\left(x-y\right)}\)
Tương tự các câu còn lại
Ta có ( 3 x – 4 y ) 2 = ( 3 x ) 2 – 2 . 3 x . 4 y + ( 4 y ) 2 = 9 x 2 – 24 x y + 16 y 2
Đáp án cần chọn là: A