K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

Ta có A = 2018.2020 + 2019.2021

= (2020 - 2).2020 + 2019.(2019 + 2) 

= 20202 - 2.2020 + 20192 + 2.2019

= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B

=> A = B

b) Ta có B = 964 - 1= (932)2 - 12 

= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1) 

  (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80 

mà A =   (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10

=> A < B

20 tháng 6 2021

c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)

=> A < B

d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)

=> A < B

10 tháng 5 2020
https://i.imgur.com/WCGo7EZ.jpg
NV
30 tháng 5 2020

Cách 3 chưa đọc, nhưng cả cách 1 lẫn cách 2 đều sai. Sai lầm là ko chú ý điều kiện \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow\left|t\right|\ge2\)

\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)=t^2-3t-2\)

- Nếu \(t\le-2\Rightarrow P=\left(t+2\right)\left(t-5\right)+8\ge8\)

- Nếu \(t\ge2\Rightarrow P=\left(t-2\right)\left(t-1\right)-4\ge-4\)

So sánh 2 trường hợp ta kết luận được \(P_{min}=-4\) khi \(t=2\) hay \(x=y\)

7 tháng 9 2018

1)\(25x^2y^4+30xy^2z+9z^2=\left(5xy^2+3z\right)^2\)

\(\dfrac{16}{9}x^2+4xyz^2+\dfrac{9}{4}y^2z^4=\left(\dfrac{4}{3}x+\dfrac{3}{2}yz^2\right)^2\)

2)

a)\(\dfrac{9}{25}x^2+\dfrac{12}{35}xy+\dfrac{4}{49}y^2=\left(\dfrac{3}{5}x+\dfrac{2}{7}y\right)^2=\left(\dfrac{3}{5}.5+\dfrac{2}{7}.\left(-7\right)\right)^2=\left(3-2\right)^2=1\)b)\(\dfrac{25}{16}u^4v^2+\dfrac{1}{5}u^2v^3+\dfrac{4}{625}v^4\)

\(=\left(\dfrac{5}{4}u^2v+\dfrac{2}{25}v^2\right)^2=\left(\dfrac{5}{4}.\dfrac{4}{25}.\left(-5\right)+\dfrac{2}{25}.\left(-5\right)^2\right)^2\)

\(=\left(-1+2\right)^2=1\)

17 tháng 9 2016

\(\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\)

\(\left(x-2y\right)^2-4\left(x-2y\right)+4=\left(x-2y-2\right)^2\)

\(\left(a^2+1\right)^2-6\left(a^2+1\right)+9=\left(a^2+1-3\right)^2=\left(a^2-2\right)^2\)

\(\left(x+y\right)^2+\left(x+y\right)x+\frac{1}{4}x^2=\left(x+y+\frac{1}{2}x\right)^2=\left(\frac{3}{2}x+y\right)^2\)

\(16x^4-9x^2=x^2\left(16x^2-9\right)=x^2\left(4x-4\right)\left(4x+3\right)\)

\(a^2-b^4=\left(a-b^2\right)\left(a+b^2\right)\)

17 tháng 9 2016

(x + 2y)2 - 16

= (x + 2y)2 - 42

= (x + 2y - 4).(x + 2y + 4)

(x - 2y)2 - 4.(x - 2y) + 4

= (x - 2y)2 - 2.(x - 2y).2 + 22

= (x - 2y - 2)2

(a2 + 1)2 - 6.(a2 + 1) + 9

= (a2 + 1)2 - 2.(a2 + 1).3 + 32

= (a2 + 1 - 3)2

= (a2 - 2)2

(x + y)2 + (x + y).x + 1/4.x2

= (x + y)2 + 2.(x + y).1/2.x + (1/2.x)2

= (x + y + 1/2.x)2

= (3/2.x + y)2

16x4 - 9x2

= (4x2)2 - (3x)2

= (4x2 - 3x).(4x2 + 3x)

a2 - b4

= a2 - (b2)2

= (a - b2).(a + b2)

30 tháng 7 2018

Giải:

a) \(\left(x-5\right)^2-16\)

\(=\left(x-5-4\right)\left(x-5+4\right)\)

\(=\left(x-9\right)\left(x-1\right)\)

b) \(25-\left(3-x\right)^2\)

\(=\left(5-3+x\right)\left(5+3-x\right)\)

\(=\left(2+x\right)\left(8-x\right)\)

c) \(49\left(y-4\right)^2-9\left(y+2\right)^2\)

\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)

\(=\left[7\left(y-4\right)-3\left(y+2\right)\right]\left[7\left(y-4\right)+3\left(y+2\right)\right]\)

\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)

\(=\left(4y-34\right)\left(10y-22\right)\)

d) \(11x+11y-x^2-xy\)

\(=11\left(x+y\right)-x\left(x+y\right)\)

\(=\left(11-x\right)\left(x+y\right)\)

e) \(x^2-xy-8x+8y\)

\(=x\left(x-y\right)-8\left(x-y\right)\)

\(=\left(x-8\right)\left(x-y\right)\)

Vậy ...

30 tháng 7 2018

\(\left(x-5\right)^2-16\)

\(=\left(x-5\right)^2-4^2\)

\(=\left(x-5-4\right)\left(x-5+4\right)\)

\(=\left(x-9\right)\left(x-1\right)\)

\(25-\left(3-x\right)^2\)

\(=5^2-\left(3-x\right)^2\)

\(=\left(5+3-x\right)\left(5-3+x\right)\)

\(=\left(8-x\right)\left(2+x\right)\)

\(49\left(y-4\right)^2-9\left(y+2\right)^2\)

\(=7^2\left(y-4\right)^2-3^2\left(y+2\right)^2\)

\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)

\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)

\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)

\(=\left(4y-34\right)\left(10y-22\right)\)

Bài 1: Thực hiện phép tính a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\) b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\) c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\) d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\) e,...
Đọc tiếp

Bài 1: Thực hiện phép tính

a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\)

b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\)

c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\)

d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)

e, \(\dfrac{x^3}{x-1}\)-\(\dfrac{x^2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{1}{x+1}\)

f, \(\dfrac{x^3+x^2-2x-20}{x^2-4}\)-\(\dfrac{5}{x+2}\)+\(\dfrac{3}{x-2}\)

g, \(\left\{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}\right\}\).\(\left\{\dfrac{x^2+y^2}{2xy}\right\}\).\(\dfrac{xy}{x^2+y^2}\)

h, \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

i, \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

k, \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left\{\dfrac{x^2}{y}-\dfrac{y^2}{x}\right\}\right]\):\(\dfrac{x-y}{x}\)

Bài 2: Rút gọn các phân thức:

a, \(\dfrac{25x^2-20x+4}{25x^2-4}\)

b, \(\dfrac{5x^2+10xy+5y^2}{3x^3+3y^3}\)

c, \(\dfrac{x^2-1}{x^3-x^2-x+1}\)

d, \(\dfrac{x^3+x^2-4x-4}{x^4-16}\)

e, \(\dfrac{4x^4-20x^3+13x^2+30x+9}{\left(4x^2-1\right)^2}\)

Bài 3: Rút gọn rồi tính giá trị các biểu thức:

a, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\) với a = 4, b = -5, c = 6

b, \(\dfrac{16x^2-40xy}{8x^2-24xy}\) với \(\dfrac{x}{y}\) = \(\dfrac{10}{3}\)

c, \(\dfrac{\dfrac{x^2+xy+y^2}{x+y}-\dfrac{x^2-xy+y^2}{x-y}}{x-y-\dfrac{x^2}{x+y}}\) với x = 9, y = 10

Bài 4: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên:

a, \(\dfrac{x^3-x^2+2}{x-1}\)

b, \(\dfrac{x^3-2x^2+4}{x-2}\)

c, \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

d, \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)

e, \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)

2
8 tháng 12 2017

Giúp mình nhé mọi người ! leuleu

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=x-1\)

\(b.\)

\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)

\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2y}{\left(x-y\right)}\)

Tương tự các câu còn lại