![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Chỗ khoanh bút bi thì là biến đổi tương đương từ biểu thức trước nó thôi bạn.
Còn chỗ khoanh mờ, là công thức nghiệm của hàm \(\cos x =0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
I, J lần lượt là trung điểm của AC và BC nên IJ // AB. Do đó giao tuyến của (IJK) với (ABD) là đường thẳng đi qua K và song song với AB cắt AD tại H. Vậy IJ // KH // AB. Ta có ∆BJK = ∆AIH ⇒ JK = IH. Hơn nữa KH ≠ IJ.
Vậy thiết diện là hình thang cân IJKH
Đáp án A
![](https://rs.olm.vn/images/avt/0.png?1311)
số số hạng là :
\(\left(2018-1\right):1+1=2018\)
tổng trên bằng
\(\left(\frac{1}{2018}+\frac{1}{2}\right).2018:2\)
\(=\frac{1010}{2018}.2018:2\)
\(=1010:2=505\)
P/s : ko chắc >: hình như sai
Công thức tính tổng
{(Số đầu + số cuối). số số hạng } :2
![](https://rs.olm.vn/images/avt/0.png?1311)
Ví dụ 3:
a, - Chọn ngẫu nhiên 3 học sinh từ 35 học sinh và sắp xếp vào 3 vị trí có: \(A^3_{35}=39270\) (cách)
b, - Chọn 1 học sinh làm lớp trưởng từ 15 học sinh nam có 15 cách.
- Chọn 2 học sinh từ 34 học sinh còn lại và sắp xếp vào 2 vị trí có \(A^2_{34}\) cách.
⇒ Có: \(15.A^2_{34}=16830\) (cách)
c, - Chọn 2 học sinh từ 20 học sinh nữ và sắp xếp vào 2 vị trí lớp trưởng, lớp phó có \(A^2_{20}\) cách.
- Chọn 1 học sinh từ 33 học sinh còn lại có 33 cách.
⇒ Có: \(A^2_{20}.33=12540\) (cách)
d, - Chọn 3 học sinh từ 15 học sinh nam xếp vào 3 vị trí có \(A^3_{15}\) cách.
⇒ Có: \(A^3_{15}\) cách chọn 3 vị trí mà không có bạn nữ nào.
⇒ Có: \(39270-A^3_{15}=36540\) cách chọn 3 vị trí để có ít nhất một bạn nữ.
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(2sinx+cosx=4\)
\(\Leftrightarrow\sqrt{5}\left(\dfrac{2}{\sqrt{5}}sinx+\dfrac{1}{\sqrt{5}}cosx\right)=4\)
\(\Leftrightarrow sin\left(x+arccos\dfrac{2}{\sqrt{5}}\right)=\dfrac{4}{\sqrt{5}}>1\)
\(\Rightarrow2sinx+4cosx-4\ne0\)
Khi đó:
\(2P.sinx+P.cosx-4P=sinx-2cosx-3\)
\(\Leftrightarrow\left(2P-1\right)sinx+\left(P+2\right)cosx=4P-3\)
Phương trình có nghiệm khi:
\(\left(2P-1\right)^2+\left(P+2\right)^2\ge\left(4P-3\right)^2\)
\(\Leftrightarrow4P^2-4P+1+P^2+4P+4\ge16P^2+9-24P\)
\(\Leftrightarrow11P^2-24P+4\le0\)
\(\Leftrightarrow\dfrac{2}{11}\le P\le2\)
\(\Rightarrow maxP=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(\left\{{}\begin{matrix}x_{A'}=x_A+\left(-1\right)=2\\y_{A'}=y_A+3=0\end{matrix}\right.\) \(\Rightarrow A'\left(2;0\right)\)
2.
\(\overrightarrow{MP}=\left(4;2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_{N'}=x_N+4=-4+4=0\\y_{N'}=y_N+2=1+2=3\end{matrix}\right.\)
\(\Rightarrow N'\left(0;3\right)\)
3.
\(\overrightarrow{MM'}=\left(13;7\right)\Rightarrow\overrightarrow{v}=\overrightarrow{MM'}=\left(13;7\right)\)
4.
\(\overrightarrow{MN}=\left(-2;-1\right)\Rightarrow MN=\sqrt{\left(-2\right)^2+\left(-1\right)^2}=\sqrt{5}\)
\(\Rightarrow M'N'=MN=\sqrt{5}\)
5.
Gọi G là trọng tâm ABC \(\Rightarrow G\left(2;1\right)\)
\(\overrightarrow{BC}=\left(-6;-3\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_{G'}=2-6=-4\\y_{G'}=1-3=-2\end{matrix}\right.\) \(\Rightarrow G'\left(-4;-2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
tham khảo:
a) AA’ vuông góc với mặt phẳng (P)
b) Nếu đường thẳng a vuông góc với mặt phẳng (P) thì hình chiếu của a trên (P) là giao điểm của a với (P).
![](https://rs.olm.vn/images/avt/0.png?1311)
2.
Xét khai triển:
\(\left(1+x\right)^{2017}=C_{2017}^0+C_{2017}^1.x+C_{2017}^2x^2+...+C_{2017}^{2017}x^{2017}\)
Cho \(x=1\) ta được:
\(2^{2017}=C_{2017}^0+C_{2017}^1+...+C_{2017}^{2017}\)
\(\Rightarrow C_{2017}^1+C_{2017}^2+...+C_{2017}^{2017}=2^{2017}-C_{2017}^0=2^{2017}-1\)
3.
Xét khai triển:
\(\left(1+x\right)^{10}=C_{10}^0+C_{10}^1x+...+C_{10}^{10}x^{10}\)
Thay \(x=2\) ta được:
\(3^{10}=C_{10}^0+2C_{10}^1+2^2C_{10}^2+...+2^{10}C_{10}^{10}\)
\(\Rightarrow S=3^{10}\)
4.
Xét khai triển:
\(\left(1+x\right)^{15}=C_{15}^0+C_{15}^1x+...+C_{15}^{15}x^{15}\)
Thay \(x=1\) ta được:
\(2^{15}=C_{15}^0+C_{15}^1+...+C_{15}^{15}\)
Mặt khác, áp dụng công thức: \(C_n^k=C_n^{n-k}\) ta có:
\(C_{15}^0=C_{15}^{15}\)
\(C_{15}^1=C_{15}^{14}\)
...
\(C_{15}^7=C_{15}^8\)
Cộng vế:
\(C_{15}^0+C_{15}^1+...+C_{15}^7=C_{15}^8+C_{15}^9+...+C_{15}^{15}\)
\(\Rightarrow C_{15}^0+C_{15}^1+...+C_{15}^{15}=2\left(C_{15}^8+C_{15}^9+...+C_{15}^{15}\right)\)
\(\Rightarrow2S=2^{15}\)
\(\Rightarrow S=2^{14}\)
bấm vào tên người muốn kb rồi kb thui
Bn chọn một người muốn kb, xong vào trang cá nhân ở đó. Có chữ "kết bạn" thì bn ấn vào và cuối cùng là chờ người ấy đồng ý thui. Dễ mà bn. K nha!