K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

\(B=\frac{2x^2+4xy}{y^2+z^2}=\frac{2x\left(x+2y\right)}{y^2+z^2}\)

\(\hept{\begin{cases}x-y-z=0\\x+2y-10z=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-y=z\\x+2y=10z\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4z\\y=3z\end{cases}}\)

Thay vào B, ta được: \(B=\frac{2.\left(4z\right)^2+4.4z.3z}{\left(3z\right)^2+z^2}=\frac{2.4^2+3.4^2}{3^2+1}=8\)

=> 

14 tháng 2 2017

 Cho a+b+c=0 và a+b2 +c=1.Tìm a4+b4+c4.

1 tháng 11 2018

đặt k là cah hay nhat bn ak

7 tháng 4 2017

Mình không biết! Xin lỗi nha! Nhớ tk mình! ~ Chúc bạn học giỏi ~ tth~ xin hết!

7 tháng 4 2017

hay nhể

9 tháng 3 2017

x-y-z=0 =>x-y=z => 2x - 2y =2z     (1)

x+2y-10z=0 => x+2y =10z             (2)

Cộng 2 vế (1) và (2) : =>3x=12z  => x=4z

Thay x=4z vào x-y-z=0 ta đc:

4z-y-z=0 => 3z-y=0   => y=3z

Thay x=4z;y=3z vào B ta tính đc B=8

9 tháng 3 2017

hjhj kb vs mik nhé 

16 tháng 2 2017

\(\left\{\begin{matrix}x-y-z=0\left(1\right)\\x+2y-10z=0\left(2\right)\end{matrix}\right.\)

Lấy (1) - (2), ta có:

\(-3y+9z=0\Leftrightarrow-3\left(y-z\right)=0\)

\(\Rightarrow y-z=0\)

\(\Rightarrow y=-z\)

Thay y=-z vào (1), ta có:

\(x-\left(-z\right)-z=0\Rightarrow x=0\)

Thay x=0 vào B, ta được B=0 (tử bằng 0)

16 tháng 2 2017

Bạn ơi: \(y-z=0\Leftrightarrow y=z\)

9 tháng 3 2017

\(\left\{{}\begin{matrix}x-y-z=0\\x+2y-10z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=3z\\x=y+z=4z\\x+2y=10z\end{matrix}\right.\)

\(B=\dfrac{2x^2+4xy}{y^2+z^2}=\dfrac{2x\left(x+2y\right)}{9z^2+z^2}=\dfrac{2.4z.10z}{10.z^2}=8\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)