Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do \(\widehat{ABD}\) đổi đỉnh với góc bên ngoài
\(\Rightarrow\widehat{ABD}=75^o\)
b) Ta có \(\widehat{ABd}=180^o-75^o=105^o\) (kể bù)
\(\Rightarrow\widehat{\text{C}DB}=\widehat{ABd}=105^o\)
Mà hai góc này ở vị trí đồng vị
\(\Rightarrow a//b\)
d) Ta có: \(a//b\) và \(a\perp c\)
\(\Rightarrow b\perp c\)
a) Do ∠ABD và ∠dBa' là hai góc đối đỉnh
⇒ ∠ABD = ∠dBa' = 75⁰
b) Ta có:
∠ABD + ∠a'BD = 180⁰ (kề bù)
⇒ ∠a'BD = 180⁰ - ∠ABD
= 180⁰ - 75⁰
= 105⁰
⇒ ∠a'BD = ∠CDB = 105⁰
Mà ∠a'BD và ∠CDB là hai góc so le trong
⇒ a // b
c) Do c ⊥ a (gt)
a // b (cmt)
⇒ c ⊥ b
a: \(\widehat{A}=36^0\)
\(\widehat{B}=\widehat{C}=72^0\)
b: \(\widehat{ABD}=\dfrac{72^0}{2}=36^0\)
mà \(\widehat{BAD}=36^0\)
nên \(\widehat{ABD}=\widehat{BAD}\)
=>ΔBAD cân tại D
hay DA=DB
xét tam giácABM VÀ TAM GIÁC ACM CÓ
AM CHUNG
GÓC AMB=GÓC AMC
A CHUNG
=>TAM GIÁC ABM=TAM GIÁC ACM
c: Xét ΔDBC có \(\widehat{DBC}=\widehat{C}\)
nên ΔDBC cân tại D
=>DB=BC
=>DA=BC
a: ta có: \(\widehat{MNS}=\widehat{HNQ}\)(hai góc đối đỉnh)
mà \(\widehat{HNQ}=60^0\)
nên \(\widehat{MNS}=60^0\)
b: Ta có: \(\widehat{QNH}=\widehat{PMN}\left(=60^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên PI//QS
=>MP//NQ
c: ta có: MP//NQ
KP\(\perp\)MP
Do đó: KP\(\perp\)QN
d: ta có: MI//SN
=>\(\widehat{MIS}+\widehat{S}=180^0\)(hai góc trong cùng phía)
=>\(\widehat{S}+100^0=180^0\)
=>\(\widehat{S}=80^0\)