Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Công thức tính số số hạng của dãy số CÁCH ĐỀU :
( số đầu - số cuối ) : khoảng cách + 1
Công thức tính tổng của dãy số CÁCH ĐỀU :
( số đầu + số cuối ) . số số hạng : 2

a. vật chịu tác động của 2 lực:
+trọng lực phương thẳng đứng chiều từ trên xuống dưới
+lực đàn hồi phương thẳng đứng chiều từ dưới lên trên

Trình bày trên giấy A4, gửi qua bưu điện........ (bạn hỏi nhiều quá không trả lời hết được)

Cách tìm bội của số b (b ≠ 0)
Lấy số b nhân lần lượt với các số 0 ; 1 ; 2 ; 3 ; 4 ;
*Kết quả nhân được là bội của b.
Cách tìm ước của số a (a>1)
Lấy số a chia lần lượt cho các số tự nhiên từ 1 đến a . *Nếu a chia hết cho số nào thì số đó là ước của a

1. Ước và Bội.
Nếu có số tự nhiên a chia hết cho số tự nhiên b thì ta nói a là bội của b còn b được gọi là ước của a.
Ví dụ : 18 ⋮ 6 ⇒ 18 là bội của 6. Còn 6 được gọi là ước của 18.
2. Cách tìm bội
Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đớ với lần lượt 0, 1, 2, 3, ...
Ví dụ : B(6) = {0 ; 6 ; 12 ; 18 ; ... }
3. Cách tìm ước.
Ta có thể tìm ước của a (a > 1) bằng cách lần lượt chia a cho các số tự nhiên từ 1 đến a để xem xét a chia hết cho những số nào, khi đó các số ấy là ước của a.
Ví dụ : Ư(16) = {16 ; 8 ; 4 ; 2 ; 1}
4. Số nguyên tố.
Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó
Ví dụ : Ư(13) = {13 ; 1} nên 13 là số nguyên tố.
5. Ước chung.
Ước chung của hai hay nhiều số là ước của tất cả các số đó.
6. Ước chung lớn nhất - ƯCLN
Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.
7. Cách tìm ước chung lớn nhất - ƯCLN
Muốn tìm UCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung.
Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là UCLN phải tìm.
Ví dụ: Tìm UCLN (18 ; 30)
Ta có:
Bước 1: phân tích các số ra thừa số nguyên tố.
18 = 2.32
30 = 2.3.5
Bước 2: thừa số nguyên tố chung là 2 và 3
Bước 3: UCLN (18; 30) = 2.3 = 6
Chú ý: Nếu các số đã cho không có thừa số nguyên tố chung thì UCLN của chúng bằng 1.
Hai hay nhiều số có UCLN bằng 1 gọi là các số nguyên tố cùng nhau.
8. Cách tìm ƯớC thông qua UCLN.
Để tìm ước chung của các số đã cho, ta có tể tìm các ước của UCLN của các số đó.
9. Bội chung.
Bội chung của hai hay nhiều số là bội của tất cả các số đó
x ∈ BC (a, b) nếu x ⋮ a và x ⋮ b
x ∈ BC (a, b, c) nếu x ⋮ a; x ⋮ b; x ⋮ c
10. Các tìm bội chung nhỏ nhất. (BCNN)
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.
HT

Tính chất 1:
a) Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa bậc bất kì thì chữ số tận cùng vẫn không thay đổi.
b) Các số có chữ số tận cùng là 4, 9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi.
c) Các số có chữ số tận cùng là 3, 7, 9 khi nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là 1.
d) Các số có chữ số tận cùng là 2, 4, 8 khi nâng lên lũy thừa bậc 4n (n thuộc N) thì chữ số tận cùng là 6.
Việc chứng minh tính chất trên không khó, xin dành cho bạn đọc. Như vậy, muốn tìm chữ số tận cùng của số tự nhiên x = am, trước hết ta xác định chữ số tận cùng của a.
- Nếu chữ số tận cùng của a là 0, 1, 5, 6 thì x cũng có chữ số tận cùng là 0, 1, 5, 6.
- Nếu chữ số tận cùng của a là 3, 7, 9, vì am = a4n + r = a4n.ar với r = 0, 1, 2, 3 nên từ tính chất 1c => chữ số tận cùng của x chính là chữ số tận cùng của ar.
- Nếu chữ số tận cùng của a là 2, 4, 8, cũng như trường hợp trên, từ tính chất 1d => chữ số tận cùng của x chính là chữ số tận cùng của 6.ar.
Tính chất 2:
Một số tự nhiên bất kì, khi nâng lên lũy thừa bậc 4n + 1 (n thuộc N) thì chữ số tận cùng vẫn không thay đổi.
Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng.
Olm chào em, để tìm ước chung lớn nhất ta làm theo các bước như sau:
Bước 1: Phân tích mỗi số thành các thừa số nguyên tố
Bước 2: Lấy các thừa số nguyên tố chung với số mũ nhỏ nhất.
Bước 3: Tìm tích các thừa số nguyên tố chung với số mũ nhỏ nhất ở bước 2 ta được ước chung lớn nhất cần tìm.
Ví dụ: tìm ước chung lớn nhất của 24 và 98
24 = \(2^3.3\)
98 = 2.7\(^2\)
Thừa số nguyên tố chung là 2 số mũ nhỏ nhất là 1
Vậy ƯCLN(24;98) = \(2^1\) = 2