K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

a) \(A=1,7+\left|3,4-x\right|\ge1,7\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|3,4-x\right|=0\Rightarrow x=3,4\)

Vậy Min(A) = 1,7 khi x = 3,4

b) \(B=\left|x+2,8\right|-3,5\ge-3,5\left(\forall x\right)\) 

Dấu "=" xảy ra khi: \(\left|x+2,8\right|=0\Rightarrow x=-2,8\)

Vậy Min(B) = -3,5 khi x = -2,8

c) \(C=3,7+\left|4,3-x\right|\ge3,7\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|4,3-x\right|=0\Rightarrow x=4,3\)

Vậy Min(C) = 3,7 khi x = 4,3

7 tháng 10 2020

các câu khác thì sao?

Dạng 3 :

a) 3x - 10 = 2x + 13

=> 3x - 2x = 13 - 10

=> x = 3

b) x + 12 = -5 - x

=> x + x = -5 - 12

=> 2x = -17

=> x = -8,5

c) x + 5 = 10 - x 

=> x + x = 10 - 5

=> 2x = 5

=> x = 2,5

d) 6x + 23 = 2x - 12

=> 2x - 6x = 23 + 12

=> -4x = 35

=> x = -8,75

e) 12 - x = x + 1

=> x + x = 12 - 1

=> 2x = 11

=> x = 5,5

f) 14 + 4x = 3x + 20

=> 4x - 3x = 20 - 14

=> x = 6

6 tháng 8 2018

a) \(\left(x-2\right).\left(2x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\2x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\)

b) \(\left(3x+9\right).\left(1-3x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+9=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=-9\\3x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}\)

c) (31 - 2x)3 =27

    (31 - 2x)= 33

=> 31 - 2x = 3

            2x = 31 - 3 

           2x = 28

             x = 14

6 tháng 8 2018

a. \(\left(x-2\right).\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}}\)

Vậy \(x=2\)hoặc \(x=\frac{1}{2}\)

b.\(\left(3x+9\right).\left(1-3x\right)=0\Leftrightarrow\orbr{\begin{cases}3x+9=0\\1-3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}}\)

Vậy \(x=-3\)hoặc \(x=\frac{1}{3}\)

c.\(\left(31-2x\right)^3=-27\)

\(\Leftrightarrow\left(31-2x\right)^3=\left(-3\right)^3\)

\(\Leftrightarrow31-2x=-3\)

\(2x=34\)

\(x=17\)

d.\(\left(x-2\right).\left(7-x\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\7-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}}\)

Vậy \(x=2\)hoặc \(x=7\)

e.\(\left(x-5\right)^5=32\)

\(\Leftrightarrow\left(x-5\right)^5=2^5\)

\(\Leftrightarrow x-5=2\Leftrightarrow x=7\)

f.\(\left(2-x\right)^4=81\)

\(\Leftrightarrow\left(2-x\right)^4=3^4\)

\(2-x=3\Leftrightarrow x=-1\)

g.\(\left|x-7\right|< 3\Leftrightarrow-3< x-7< 3\Leftrightarrow4< x< 10\)

25 tháng 1 2017

\(\text{a) A = | -x + 8| - 21}\)
Vì | -x + 8| \(\le\) 0 ( với mọi x )
=> A = | -x + 8| - 21\(\ge\) -21
=> Amax = -21 khi | -x + 8| = 0 => -x + 8 = 0 => -x = -8 => x = 8
Vậy với Amin = -21 thì x = 8
b) \(B=\left|-x-17\right|+\left|y-36\right|+12\)
\(\left\{\begin{matrix}\left|-x-17\right|\ge0\\\left|y-36\right|\ge0\end{matrix}\right.\)=> \(\left|-x-17\right|+\left|y-36\right|\ge0\)
=> \(B=\left|-x-17\right|+\left|y-36\right|+12\le12\)
=> Bmin = 12 khi \(\left|-x-17\right|+\left|y-36\right|=0\)
=> \(\left\{\begin{matrix}\left|-x-17\right|=0\\\left|y-36\right|=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x-17=0\\y-36=0\end{matrix}\right.\)=> \(\left\{\begin{matrix}-x=17\\y=36\end{matrix}\right.\)=>\(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
Vậy Bmin = 12 khi \(\left\{\begin{matrix}x=-17\\y=36\end{matrix}\right.\)
c) \(C=-\left|2x-8\right|-35\)
\(-\left|2x-8\right|\ge0\)
=> \(C=-\left|2x-8\right|-35\ge-35\)
=> Cmin = -35 khi \(-\left|2x-8\right|=0\)=> \(-2x-8=0\)=>\(-2x=8\)=> \(x=4\)
Vậy Cmin = -35 khi x = 4
d) \(D=3\left(3x-12\right)^2-37\)
\(\left(3x-12\right)^2\ge0\)
=> \(3\left(3x-12\right)^2\ge0\)
=> \(D=3\left(3x-12\right)^2-37\ge-37\)
=> Dmin = -37 khi \(3\left(3x-12\right)^2=0\) => \(\left(3x-12\right)^2=0\)=> \(3x-12=0\)=> \(3x=12\)=>\(x=4\)
Vậy Dmin = -37 khi x = 4

a, A=|-x+8|-21

Vì |-x+8|>hoặc =0 với mọi x

suy ra |-x+8|-21>hoặc = -21

Dấu = xảy ra khi và chỉ khi |-x+8|=0

Khi và chỉ khi -x+8=0

Khi và chỉ khi-x=-8

khi và chỉ khi x =8

Vậy GTNN của A là -21 tại x=8

15 tháng 2 2020

\(A=\left|-x+8\right|-21\)

\(A=\left|-x+8\right|-21\ge-21\)

\(MinA=-21\Leftrightarrow-x+8=0\)\(\Leftrightarrow x=8\)

\(B=\left|-x-17\right|+\left|y-36\right|+12\)

\(B=\left|-x-17\right|+\left|y-36\right|+12\ge12\)

\(MinB=12\Leftrightarrow\hept{\begin{cases}-x-17=0\\y-36=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-17\\y=36\end{cases}}\)

\(C=-\left|2x+8\right|-35\)

\(C=-\left|2x+8\right|-35\le-35\)

\(MaxC=-35\Leftrightarrow2x+8=0\Leftrightarrow x=-4\)

15 tháng 2 2020

Trl

-Bạn kia làm đúng rồi !~

Học tốt 

nhé bạn :>

19 tháng 1 2019

\(2x+4⋮x-1\Rightarrow2\left(x-1\right)+6⋮x-1\)

\(\Rightarrow6⋮x-1\Rightarrow x-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(\Rightarrow x\in\left\{2;0;3;-1;4;-2;7;-5\right\}\)

Vậy...........................................

\(2x^2+\left(-3\right)^2=41\)

\(\Rightarrow2x^2=41-9=32\)

\(\Rightarrow x^2=16\)

\(\Rightarrow x=\pm4\)

\(2\left(x-5\right)-3\left(x+7\right)=14\)

\(\Rightarrow2x-10-3x-21=14\)

\(\Rightarrow2x-3x=14+21+10\)

\(\Rightarrow-x=45\Rightarrow x=-45\)

\(-7\left(5-x\right)-2\left(x-10\right)=15\)

\(\Rightarrow-35+x-2x+20=15\)

\(\Rightarrow x-2x=15-20+35\)

\(\Rightarrow-x=30\Rightarrow x=-30\)

a) 2^x.2^4=128

=>2^x.2^2=2^7

=>2^x=2^7:2^2

=>2^x=2^5

=>x=5

b)x^15=x

=>x^15-x=0

=>x(x^16-x)=0

=>2 trượng hợp:x=0 và x^16-1=0(x^16-1=0 cx 2 th nha)

b),d),e) như nhau nha!

c) dễ rồi

30 tháng 10 2018

\(a)2^x\cdot4=128\)

\(\Rightarrow2^x=\frac{128}{4}\)

\(\Rightarrow2^x=32\)

\(\Rightarrow2^x=2^5\)

\(\Rightarrow x=5\)

\(b)x^{15}=x\)

\(\Rightarrow x^{15}-x=0\)

\(\Rightarrow x(x^{14}-1)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}=1\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}\)

\(c)(2x+1)^3=125\)

\(\Rightarrow(2x+1)^3=5^3\)

\(\Rightarrow2x+1=5\)

\(\Rightarrow2x=5-1\)

\(\Rightarrow2x=4\)

\(\Rightarrow x=4:2=2\)

\(d)(x-5)^4=(x-5)^6\)

\(\Rightarrow(x-5)^6-(x-5)^4=0\)

\(\Rightarrow(x-5)^4\cdot\left[(x-5)^2-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}(x-5)^4=0\\(x-5)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=6\end{cases}}\)

\(e)(2x-15)^5=(2x-15)^3\)

\(\Rightarrow(2x-15)^5-(2x-15)^3=0\)

\(\Rightarrow(2x-15)^3-\left[(2x-15)^2-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}(2x-15)^3=0\\(2x-15)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\varnothing\\x=8\end{cases}}\)

Chúc bạn hoc tốt :>