K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(5+2\sqrt{6}\approx9,89897948556636...\)

7 tháng 6 2016

\(5+2\sqrt{6}=3+2\sqrt{6}+2=\left(\sqrt{3}+\sqrt{2}\right)^2.\)

14 tháng 10 2017

biến đổi biểu thức thành như sau:

\(\sqrt{4+2\sqrt{2}}\cdot\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\cdot\left(2-\sqrt{2+\sqrt{2}}\right)}\)

áp dụng hằng đẳng thức đáng nhớ:

\(\sqrt{4+2\sqrt{2}}\cdot\sqrt{2^2-\left(\sqrt{2+\sqrt{2}}\right)^2}=\sqrt{4+2\sqrt{2}}\cdot\sqrt{2-\sqrt{2}}\)

\(\sqrt{2\cdot\left(2+\sqrt{2}\right)}\cdot\sqrt{2-\sqrt{2}}=\sqrt{2\cdot\left(2^2-\left(\sqrt{2}\right)^2\right)}=\sqrt{8}=2\sqrt{2}\)

6 tháng 9 2016

Ta có M = \(\left(5+2\sqrt{6}\right)^{1004}+\left(5-2\sqrt{6}\right)^{1004}\)

Ta có a2 = 10a - 1 ; b2 = 10b  -1 

Đặt Sn = an + bn 

=> \(a^{n+2}+b^{b+2}=10.\left(a^{n+1}+b^{n+1}\right)-\left(a^n+b^n\right)\)

\(=>s_{n+2}=s_{n+1}.10+s_n\)chia hết cho 10

=> \(s_n+s_{n+2}\)chia hết cho 10

Tương tự ta được \(s_{n+2}+s_{n+4}\)chia hết cho 10

=> \(s_{n+2}+s_{n+4}-s_n-s_{n+2}\)chia hết cho 10

=> \(s_{n+4}-s_n\)chia hết cho 10

Ta có S0 = 2

S1 = 10

=> s2;s3....sn là các số tự nhiên và s0;s4;...;s4n có chữ số tận cùng là 2 

Vậy M có chữ số tận cùng là 2 

1 tháng 5 2017

Làm tới dòng thứ 3 máy đơ, 2 lần rồi T,T

Mình chia làm 2 phần tính nhé

\(A=\frac{4\sqrt{2}}{\sqrt{10-2\sqrt{21}}}+\frac{3}{\sqrt{15+6\sqrt{6}}}-\frac{1}{\sqrt{19-6\sqrt{10}}}\)

\(A=\frac{4\sqrt{2}}{\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}}+\frac{3}{\sqrt{\left(\sqrt{9}+\sqrt{6}\right)^2}}-\frac{1}{\sqrt{\left(\sqrt{10}-\sqrt{9}\right)^2}}\)

\(A=\frac{4\sqrt{2}}{\sqrt{7}-\sqrt{3}}+\frac{3}{3+\sqrt{6}}-\frac{1}{\sqrt{10}-3}\)

\(A=\frac{4\sqrt{2}\left(\sqrt{7}+\sqrt{3}\right)}{7-3}+\frac{3\left(3-\sqrt{6}\right)}{9-6}-\frac{1\left(\sqrt{10}+3\right)}{10-9}\)

\(A=\frac{4\sqrt{14}+4\sqrt{6}}{4}+\frac{9-3\sqrt{6}}{3}-\sqrt{10}-3\)

\(A=\sqrt{14}+\sqrt{6}+3-\sqrt{6}-\sqrt{10}-3\)

\(A=\sqrt{14}-\sqrt{10}\)

\(B=\sqrt{6+\sqrt{35}}\)

\(B=\frac{\sqrt{2}\left(\sqrt{6+\sqrt{35}}\right)}{\sqrt{2}}\)

\(B=\frac{\sqrt{12+2\sqrt{35}}}{\sqrt{2}}\)

\(B=\frac{\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}}{\sqrt{2}}\)

\(B=\frac{\sqrt{7}+\sqrt{5}}{\sqrt{2}}\)

\(\Rightarrow M=A.B=\left(\sqrt{14}-\sqrt{10}\right).\frac{\sqrt{7}+\sqrt{5}}{\sqrt{2}}\)

\(M=\sqrt{2}\left(\sqrt{7}-\sqrt{5}\right).\frac{\sqrt{7}+\sqrt{5}}{\sqrt{2}}\)

\(M=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

\(M=\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2\)

\(M=7-5=2\)

3.

\(•x=3+\sqrt{2}\\ x^2=\left(3+\sqrt{2}\right)^2\\ x^2=9+2.3.\sqrt{2}+2\\ x^2=11+6\sqrt{2}\\• y=\sqrt{11+6\sqrt{2}}\\ y^2=\left(\sqrt{11+6\sqrt{2}}\right)^2\\ y^2=11+6\sqrt{2}\)

\(\Rightarrow x^2=y^2=11+6\sqrt{2}\)

23 tháng 9 2017

1. ta có : \(4\sqrt{7}=\sqrt{112}\)

\(3\sqrt{3}=\sqrt{27}\)

ta thấy : \(\sqrt{112}>\sqrt{27}\) hay \(4\sqrt{7}>3\sqrt{3}\)

2. \(\dfrac{1}{4}\sqrt{82}=\sqrt{\dfrac{41}{8}}\)

\(6\sqrt{\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)

ta thấy :\(\sqrt{\dfrac{41}{8}}< \sqrt{\dfrac{36}{7}}\) hay \(\dfrac{1}{4}\sqrt{82}< 6\sqrt{\dfrac{1}{7}}\)

3. \(x^2=\left(3+\sqrt{2}\right)^2\)

\(y^2=11+6\sqrt{2}\)=\(\left(3+\sqrt{2}\right)^2\)

ta thấy : \(x^2=y^2\Rightarrow x=y\)

14 tháng 8 2020

<=>   \(x^2=2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\)

<=>   \(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{12-6\sqrt{2+\sqrt{3}}+6\sqrt{2+\sqrt{3}}-3\left(2+\sqrt{3}\right)}\)

<=>   \(x^2=8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-2\sqrt{12-6-3\sqrt{3}}\)

<=>   \(x^2=8-\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}-2\sqrt{6-3\sqrt{3}}\)

<=>   \(x^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{2}.\sqrt{12-6\sqrt{3}}\)

<=>   \(x^2=8-\sqrt{6}-\sqrt{2}-\sqrt{2}.\sqrt{\left(3-\sqrt{3}\right)^2}\)

<=>   \(x^2=8-\sqrt{6}-\sqrt{2}-\sqrt{2}\left(3-\sqrt{3}\right)\)

<=>   \(x^2=8-\sqrt{6}-\sqrt{2}-3\sqrt{2}+\sqrt{6}\)

<=>   \(x^2=8-4\sqrt{2}\)

<=>   \(8-x^2=4\sqrt{2}\)

<=>   \(\left(8-x^2\right)^2=\left(4\sqrt{2}\right)^2\)

<=>   \(x^4-16x^2+64=32\)

<=>   \(x^4-16x^2=-32\)

VẬY    \(x^4-16x^2=-32\)

*** ĐÂY LÀ 1 BÀI TOÁN RẤT CỔ RỒI !!!!!!