Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tới dòng thứ 3 máy đơ, 2 lần rồi T,T
Mình chia làm 2 phần tính nhé
\(A=\frac{4\sqrt{2}}{\sqrt{10-2\sqrt{21}}}+\frac{3}{\sqrt{15+6\sqrt{6}}}-\frac{1}{\sqrt{19-6\sqrt{10}}}\)
\(A=\frac{4\sqrt{2}}{\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}}+\frac{3}{\sqrt{\left(\sqrt{9}+\sqrt{6}\right)^2}}-\frac{1}{\sqrt{\left(\sqrt{10}-\sqrt{9}\right)^2}}\)
\(A=\frac{4\sqrt{2}}{\sqrt{7}-\sqrt{3}}+\frac{3}{3+\sqrt{6}}-\frac{1}{\sqrt{10}-3}\)
\(A=\frac{4\sqrt{2}\left(\sqrt{7}+\sqrt{3}\right)}{7-3}+\frac{3\left(3-\sqrt{6}\right)}{9-6}-\frac{1\left(\sqrt{10}+3\right)}{10-9}\)
\(A=\frac{4\sqrt{14}+4\sqrt{6}}{4}+\frac{9-3\sqrt{6}}{3}-\sqrt{10}-3\)
\(A=\sqrt{14}+\sqrt{6}+3-\sqrt{6}-\sqrt{10}-3\)
\(A=\sqrt{14}-\sqrt{10}\)
\(B=\sqrt{6+\sqrt{35}}\)
\(B=\frac{\sqrt{2}\left(\sqrt{6+\sqrt{35}}\right)}{\sqrt{2}}\)
\(B=\frac{\sqrt{12+2\sqrt{35}}}{\sqrt{2}}\)
\(B=\frac{\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}}{\sqrt{2}}\)
\(B=\frac{\sqrt{7}+\sqrt{5}}{\sqrt{2}}\)
\(\Rightarrow M=A.B=\left(\sqrt{14}-\sqrt{10}\right).\frac{\sqrt{7}+\sqrt{5}}{\sqrt{2}}\)
\(M=\sqrt{2}\left(\sqrt{7}-\sqrt{5}\right).\frac{\sqrt{7}+\sqrt{5}}{\sqrt{2}}\)
\(M=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
\(M=\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2\)
\(M=7-5=2\)
<=> \(x^2=2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\)
<=> \(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{12-6\sqrt{2+\sqrt{3}}+6\sqrt{2+\sqrt{3}}-3\left(2+\sqrt{3}\right)}\)
<=> \(x^2=8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-2\sqrt{12-6-3\sqrt{3}}\)
<=> \(x^2=8-\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}-2\sqrt{6-3\sqrt{3}}\)
<=> \(x^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{2}.\sqrt{12-6\sqrt{3}}\)
<=> \(x^2=8-\sqrt{6}-\sqrt{2}-\sqrt{2}.\sqrt{\left(3-\sqrt{3}\right)^2}\)
<=> \(x^2=8-\sqrt{6}-\sqrt{2}-\sqrt{2}\left(3-\sqrt{3}\right)\)
<=> \(x^2=8-\sqrt{6}-\sqrt{2}-3\sqrt{2}+\sqrt{6}\)
<=> \(x^2=8-4\sqrt{2}\)
<=> \(8-x^2=4\sqrt{2}\)
<=> \(\left(8-x^2\right)^2=\left(4\sqrt{2}\right)^2\)
<=> \(x^4-16x^2+64=32\)
<=> \(x^4-16x^2=-32\)
VẬY \(x^4-16x^2=-32\)
*** ĐÂY LÀ 1 BÀI TOÁN RẤT CỔ RỒI !!!!!!
3.
\(•x=3+\sqrt{2}\\ x^2=\left(3+\sqrt{2}\right)^2\\ x^2=9+2.3.\sqrt{2}+2\\ x^2=11+6\sqrt{2}\\• y=\sqrt{11+6\sqrt{2}}\\ y^2=\left(\sqrt{11+6\sqrt{2}}\right)^2\\ y^2=11+6\sqrt{2}\)
\(\Rightarrow x^2=y^2=11+6\sqrt{2}\)
1. ta có : \(4\sqrt{7}=\sqrt{112}\)
\(3\sqrt{3}=\sqrt{27}\)
ta thấy : \(\sqrt{112}>\sqrt{27}\) hay \(4\sqrt{7}>3\sqrt{3}\)
2. \(\dfrac{1}{4}\sqrt{82}=\sqrt{\dfrac{41}{8}}\)
\(6\sqrt{\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)
ta thấy :\(\sqrt{\dfrac{41}{8}}< \sqrt{\dfrac{36}{7}}\) hay \(\dfrac{1}{4}\sqrt{82}< 6\sqrt{\dfrac{1}{7}}\)
3. \(x^2=\left(3+\sqrt{2}\right)^2\)
\(y^2=11+6\sqrt{2}\)=\(\left(3+\sqrt{2}\right)^2\)
ta thấy : \(x^2=y^2\Rightarrow x=y\)
\(a\sqrt{b}-b\sqrt{a}=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(7\sqrt{7}+3\sqrt{3}=\left(\sqrt{7}+\sqrt{3}\right)\left(7-\sqrt{21}+3\right)=\left(\sqrt{7}+\sqrt{3}\right)\left(10-\sqrt{21}\right)\)
\(a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\)
\(1-a\sqrt{a}=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)\)
\(x^2-\sqrt{x}=\sqrt{x}\left(x\sqrt{x}-1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
\(\left(\sqrt{2}+1\right)^2-4\sqrt{2}=\left(\sqrt{2}-1\right)^2\)
\(\left(\sqrt{5}+2\right)^2-8\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
2 cái trên đều áp dụng HĐT \(\left(a+b\right)^2-4ab=\left(a-b\right)^2\)
\(5\sqrt{2}-2\sqrt{5}=\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)\)
biến đổi biểu thức thành như sau:
\(\sqrt{4+2\sqrt{2}}\cdot\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\cdot\left(2-\sqrt{2+\sqrt{2}}\right)}\)
áp dụng hằng đẳng thức đáng nhớ:
\(\sqrt{4+2\sqrt{2}}\cdot\sqrt{2^2-\left(\sqrt{2+\sqrt{2}}\right)^2}=\sqrt{4+2\sqrt{2}}\cdot\sqrt{2-\sqrt{2}}\)
\(\sqrt{2\cdot\left(2+\sqrt{2}\right)}\cdot\sqrt{2-\sqrt{2}}=\sqrt{2\cdot\left(2^2-\left(\sqrt{2}\right)^2\right)}=\sqrt{8}=2\sqrt{2}\)