\(\frac{4\sqrt{2}}{\sqrt{10-2\sqrt{21}}}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

Làm tới dòng thứ 3 máy đơ, 2 lần rồi T,T

Mình chia làm 2 phần tính nhé

\(A=\frac{4\sqrt{2}}{\sqrt{10-2\sqrt{21}}}+\frac{3}{\sqrt{15+6\sqrt{6}}}-\frac{1}{\sqrt{19-6\sqrt{10}}}\)

\(A=\frac{4\sqrt{2}}{\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}}+\frac{3}{\sqrt{\left(\sqrt{9}+\sqrt{6}\right)^2}}-\frac{1}{\sqrt{\left(\sqrt{10}-\sqrt{9}\right)^2}}\)

\(A=\frac{4\sqrt{2}}{\sqrt{7}-\sqrt{3}}+\frac{3}{3+\sqrt{6}}-\frac{1}{\sqrt{10}-3}\)

\(A=\frac{4\sqrt{2}\left(\sqrt{7}+\sqrt{3}\right)}{7-3}+\frac{3\left(3-\sqrt{6}\right)}{9-6}-\frac{1\left(\sqrt{10}+3\right)}{10-9}\)

\(A=\frac{4\sqrt{14}+4\sqrt{6}}{4}+\frac{9-3\sqrt{6}}{3}-\sqrt{10}-3\)

\(A=\sqrt{14}+\sqrt{6}+3-\sqrt{6}-\sqrt{10}-3\)

\(A=\sqrt{14}-\sqrt{10}\)

\(B=\sqrt{6+\sqrt{35}}\)

\(B=\frac{\sqrt{2}\left(\sqrt{6+\sqrt{35}}\right)}{\sqrt{2}}\)

\(B=\frac{\sqrt{12+2\sqrt{35}}}{\sqrt{2}}\)

\(B=\frac{\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}}{\sqrt{2}}\)

\(B=\frac{\sqrt{7}+\sqrt{5}}{\sqrt{2}}\)

\(\Rightarrow M=A.B=\left(\sqrt{14}-\sqrt{10}\right).\frac{\sqrt{7}+\sqrt{5}}{\sqrt{2}}\)

\(M=\sqrt{2}\left(\sqrt{7}-\sqrt{5}\right).\frac{\sqrt{7}+\sqrt{5}}{\sqrt{2}}\)

\(M=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

\(M=\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2\)

\(M=7-5=2\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

2.1

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5.1}+1}-\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}=|\sqrt{5}+1|-|\sqrt{5}-1|=2\)

2.2

\(B\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{3+2\sqrt{3.5}+5}+\sqrt{3-2\sqrt{3.5}+5}-2\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(\sqrt{3}-\sqrt{5})^2}-2\sqrt{(\sqrt{5}-1)^2}\)

\(=|\sqrt{3}+\sqrt{5}|+|\sqrt{3}-\sqrt{5}|-2|\sqrt{5}-1|=2\)

$\Rightarrow B=\sqrt{2}$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 1:

1. ĐKXĐ: \(\left\{\begin{matrix} 2x-1\geq 0\\ x-3\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x\geq 3\\ x< 5\end{matrix}\right.\Leftrightarrow 3\leq x< 5\)

2.

ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 2-x\geq 0\\ x+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 2\\ x>-1\end{matrix}\right.\Leftrightarrow 1\leq x\leq 2\)

11) \(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}\) 12) \(\frac{6}{3\sqrt{2}+2\sqrt{3}}\) 13) \(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\left(\sqrt{3}+\sqrt{2}\right)\) 14)\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\) 15)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\) 16)\(\frac{\sqrt{2}}{2\sqrt{3}+4\sqrt{2}}\) 17)...
Đọc tiếp

11) \(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)

12) \(\frac{6}{3\sqrt{2}+2\sqrt{3}}\)

13) \(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

14)\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

15)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)

16)\(\frac{\sqrt{2}}{2\sqrt{3}+4\sqrt{2}}\)

17) \(\frac{1}{4-3\sqrt{2}}-\frac{1}{4+3\sqrt{2}}\)

18)\(\frac{6}{\sqrt{2}-\sqrt{3}+3}\)

19)\(\frac{\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}}{\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}}\)

20)\(\sqrt{24}+6\sqrt{\frac{2}{3}}+\frac{10}{\sqrt{6}-1}\)

21)\(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{58}}\)

22)\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\frac{1}{5}}\)

23)\(\left(3\sqrt{8}-2\sqrt{12}+\sqrt{20}\right):\left(3\sqrt{18}-2\sqrt{27}+\sqrt{45}\right)\)

24)\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

25)\(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\)

26)\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}+\frac{3\sqrt{45}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)

27)\(\frac{1}{\sqrt{7-\sqrt{24}}+1}-\frac{1}{\sqrt{7+\sqrt{24}}-1}\)

28)\(\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{2}{3+\sqrt{3}}\)

29)\(\frac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

30)\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)

31)\(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)

32)\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}-\sqrt{10}\)

3
29 tháng 9 2019

undefined

29 tháng 9 2019

undefined

4 tháng 7 2019

Câu e mình chịu, bạn 😔😔

NV
16 tháng 9 2019

1/\(\sqrt{8-2\sqrt{15}}-\sqrt{21-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(2\sqrt{5}-1\right)^2}\)

Bạn tự làm tiếp

2/ \(\frac{4}{\sqrt{7-4\sqrt{3}}}-\frac{4}{7-4\sqrt{3}}=\frac{4}{\sqrt{\left(2-\sqrt{3}\right)^2}}-\frac{4}{\left(2-\sqrt{3}\right)^2}=\frac{4}{2-\sqrt{3}}-\frac{4}{\left(2-\sqrt{3}\right)^2}\)

\(=\frac{8-4\sqrt{3}-4}{\left(2-\sqrt{3}\right)^2}=\frac{4-4\sqrt{3}}{\left(2-\sqrt{3}\right)^2}\) đến đây ko rút gọn được nữa, nghi bạn chép sai đề.

Tử số của phân số thứ hai là 4 hay 1 vậy?

3/ \(\frac{\sqrt{8+2\sqrt{15}}-\sqrt{4-2\sqrt{3}}}{\sqrt{6-2\sqrt{5}}}=\frac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{3+\sqrt{5}}{2}\)

4/ \(\frac{10}{\sqrt{\left(\sqrt{5}-2\right)^2}}-\frac{12}{\sqrt{\left(3+\sqrt{5}\right)^2}}+\frac{20}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{10}{\sqrt{5}-2}-\frac{12}{3+\sqrt{5}}+\frac{20}{\sqrt{5}-1}\)

\(=\frac{10\left(\sqrt{5}+2\right)}{1}-\frac{12\left(3-\sqrt{5}\right)}{4}+\frac{20\left(\sqrt{5}+1\right)}{4}=16+18\sqrt{5}\)

17 tháng 3 2020

\(\frac{10}{\sqrt{5}-2.\sqrt{5}.2+4}-\frac{12}{\sqrt{\sqrt{5}+2.\sqrt{5}.3+9}}+\frac{20}{\sqrt{5-2.\sqrt{5}.1+1}}=\frac{10}{\left(\sqrt{5}-2\right)^2}-\frac{12}{\sqrt{\left(\sqrt{5}+3\right)^2}}+\frac{20}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{10}{\sqrt{5}-2}-\frac{12}{\sqrt{5}+3}+\frac{20}{\sqrt{5}-1}=\frac{10\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right).\left(\sqrt{5}+2\right)}-\frac{12.\left(\sqrt{5}-3\right)}{\left(\sqrt{5}+3\right).\sqrt{5}-3\left(\right)}+\frac{20.\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\frac{10\sqrt{5}-20}{5-4}-\frac{12\sqrt{5}-36}{5-9}+\frac{20\sqrt{5}+20}{5-1}\\=\frac{40\sqrt{5}-80+12\sqrt{5}+36+20\sqrt{5}+20}{4}=\\ 18\sqrt{5}-6\)

20 tháng 10 2018

 a) \(\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7\left(\sqrt{3}+\sqrt{5}\right)}}=\) \(\frac{\sqrt{2}}{\sqrt{7}}\)

 b ) \(\frac{15\sqrt{2}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}=\frac{3\left(5\sqrt{2}+3\sqrt{3}\right)}{3\left(\sqrt{3}+\sqrt{5}\right)}\)\(=\frac{5\sqrt{2}+3\sqrt{3}}{\sqrt{3}+\sqrt{5}}\)

c)\(\frac{\sqrt{2}-\sqrt{6}+\sqrt{3}-\sqrt{9}+\sqrt{4}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) =  \(\frac{\sqrt{2}\left(1-\sqrt{3}\right)+\sqrt{3}\left(1-\sqrt{3}\right)+\sqrt{4}\left(1-\sqrt{3}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)\(=\frac{\left(1-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)

 d) \(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\)