K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6

gọi số bạn dự định đi du lịch là n

gọi tổng chi phí cho chuyến đi là $

chi phí dự kiến ban đầu cho mỗi HS là: \(\dfrac{S}{n}\)

chi phí mà mỗi bạn cần phải trả sau khi 2 bạn bận việc là: \(\dfrac{S}{n-2}\)

chi phí mỗi bạn còn lại phải trả gấp 1.25 lần chi phí dự kiến ban đầu nên ta có:

\(\dfrac{S}{n-2}=1,25\cdot\dfrac{S}{n}\\ \dfrac{1}{n-2}=1,25\cdot\dfrac{1}{n}\)

\(\dfrac{1}{n-2}=\dfrac{5}{4n}\\ 4n=5\cdot\left(n-2\right)\)

4n = 5n - 10

5n - 4n = 10

n = 10

vậy số học sinh dự định đi du lịch ban đầu là 10 người

 

21 tháng 12 2021

Số vốn là :

100× 5 =500 ( triệu đồng )

75 cái bán được số tiền là :

6,2 × 75 = 465 ( triệu đồng )

Lợi nhuận 20số tiền ông phải nhận được sau khi bán 100 cái là :

500 + 500× 200 == 600 ( triệu )

Vì :

Số tiền cần nhận được khi bán 25 chiếc còn lại là :

600  465 == 135 ( triệu )

Suy ra :

Giá mỗi chiếc là :

135 : 25 == 5,4 ( triệu )

26 tháng 12 2021

Câu 1 :

Số vốn là:

            100x5=500 triệu

Số tiền bán được 75 cái là:

            6,2x75=465 triệu

Lợi nhuận 20%,tức số tiền  ông nhận sau khi bán 100 cái là

            500+500x20%=600 triệu

Số tiền nhận khi bán 25 chiếc còn lại:

            600-465=135

Giá mỗi chiếc là

            135:25=5,4Triệu

Câu 2 :

a) Chứng minh AE = 2AB và tứ giác AECD là hình vuông.

Vì E là điểm đối xứng với A qua B nên B là trung điểm của AE. Do đó, AE = 2AB.

Theo đề bài ta có: AD = CD = 2AB

=> AD = CD = AE.

Vì ABCD là hình thang vuông nên ta có: {AB//CDˆA=ˆD=90∘AB // CDA^=D^=90∘

Xét tứ giác AECD ta có:

AE // CD

AE = CD

=> Tứ giác AECD là hình bình hành (dấu hiệu nhận biết).

Mà ta lại có: AD = AE (chứng minh trên)

=> Tứ giác AECD là hình thoi (dấu hiệu nhận biết)

Theo giả thiết: ˆA=ˆD=90oA^=D^=90o

Suy ra, tứ giác AECD là hình vuông (dấu hiệu nhận biết)

b) Gọi M là trung điểm của EC và I là giao điểm của BC và DM. Chứng minh diện tích tam giác DIC bằng diện tích tứ giác EBIM.

Vì tứ giác AECD là hình vuông nên AE = CE = CD = DA (định nghĩa hình vuông)

Vì M là trung điểm của EC nên EM = CM =CE2=CE2.

Mà BE=AE2BE=AE2 và AE = CE (chứng minh trên).

=> BE = CM

Ta có: SBEC=12.BE.CESDCM=12.CM.DC}⇒SBEC=SDCMSBEC=12.BE.CESDCM=12.CM.DC⇒SBEC=SDCM

⇒SBEMI+SCMI=SDCI+SCMI⇒SBEMI+SCMI=SDCI+SCMI

⇒SBEMI=SDCI⇒SBEMI=SDCI (đpcm)

c) Biết DA và CB cắt nhau tại V. Gọi N là hình chiếu của I trên AD. Chứng minh NI2=ND.NVNI2=ND.NV.

Xét tam giác BEC và tam giác MCD ta có:

BE = MC (cmt)

ˆBEC=ˆMCD=90∘BEC^=MCD^=90∘

EC = CE (cmt)

⇒ΔBEC=ΔMCD⇒ΔBEC=ΔMCD (c-g-c)

⇒ˆBCE=ˆMDC⇒BCE^=MDC^ (hai góc tương ứng)

Ta có: ˆBCE+¯¯¯¯¯¯¯¯¯BCD=90∘⇒ˆMDC+ˆBCD=90∘BCE^+BCD¯=90∘⇒MDC^+BCD^=90∘

Xét tam giác DIC ta có: ˆIDC+ˆDCI=90∘⇒ˆDIC=90∘IDC^+DCI^=90∘⇒DIC^=90∘ (áp dụng định lý tổng ba góc trong một tam giác)

=> DI vuông góc với BC tại I.

Xét tam giác DNI vuông tại N, áp dụng định lý Py-ta-go ta có:

ID2=IN2+ND2⇒ND2=ID2−IN2ID2=IN2+ND2⇒ND2=ID2−IN2       

Xét tam giác VNI vuông tại N, áp dụng định lý Py-ta-go ta có:

IV2=IN2+NV2⇒NV2=IV2−IN2IV2=IN2+NV2⇒NV2=IV2−IN2 

Xét tam giác DVI vuông tại I, áp dụng định lý Py-ta-go ta có:

ID2+IV2=DV2ID2+IV2=DV2

⇒ID2+IV2=(VN+ND)2⇒ID2+IV2=VN+ND2

⇒ID2+IV2=VN2+2VN.ND+ND2⇒ID2+IV2=VN2+2VN.ND+ND2

⇒ID2+IV2=IV2−IN2+2VN.ND+ID2−IN2⇒ID2+IV2=IV2−IN2+2VN.ND+ID2−IN2

⇒2IN2=2VN.ND⇒2IN2=2VN.ND

⇒IN2=VN.ND⇒IN2=VN.ND.

Vậy NI2=ND.NVNI2=ND.NV.

 

19 tháng 1 2018

Vào giờ chót,còn lại số bạn đi được là:

10-2=8(bạn)

Mỗi bạn phải trả số tiền là:

(50000x8):2=200000(đồng)

Chi phí chuyến đi là:

200000x10=2000000(đồng)

Đáp số:2000000 đồng

19 tháng 1 2018

Gọi số tiền mỗi bạn phải đóng để đủ chi phí chuyến đi là x (đồng)

\(\Rightarrow\) Chi phí chuyến đi là \(10x\) (đồng)

Vì vào giờ chót 2 bạn bận việc đột xuất không đi được nên mỗi bạn phải thêm 50000 (đồng) so vs dự kiến đầu

=> Chi phí chuyến đi là \(8\left(x+50000\right)\) (đồng)

Ta có phương trình \(10x=8\left(x+50000\right)\)

\(\Leftrightarrow10x=8x+400000\)

\(\Rightarrow2x=400000\Rightarrow x=200000\Rightarrow10x=1000000\) (đồng)

Vậy chi phí chuyến đi là 1000000 (đồng)

23 tháng 4 2022

ai trả lời giúp mình ạ 

6 tháng 7 2021

e chịu 

Đáp án+Giải thích các bước giải:

Bài 11:

a)x=30x+15a)x=30x+15 (nghìn đồng)

b)b) Vì An được giảm 10%10% và phải trả 121,5121,5 nghìn đồng nên ta có:

 (100%−10%)x=121,5(100%-10%)x=121,5

⇔90%x=121,5⇔90%x=121,5

mà x=30x+15x=30x+15

  ⇒(30x+15).90%=121,5⇒(30x+15).90%=121,5

⇔(30x+15).0,9=121,5⇔(30x+15).0,9=121,5

⇔30x+15=135⇔30x+15=135

⇔ 30x=120⇔ 30x=120

⇔x=4(t⇔x=4(t/m)/m)

  Vậy An đã mua 44 ly trà sữa

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

Giả sử theo kế hoạch, mỗi ngày siêu thị bán được $a$ kg rau.

Khối lượng rau siêu thị mua: $18a$ (kg)

Theo bài ra ta có:

$(a+120)(18-3)=18a$

$\Leftrightarrow 15(a+120)=18a$

$\Leftrightarrow a=600$ (kg)

Khối lượng rau siêu thị thu mua là: $18a=18.600=10800$ (kg)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Hoài Thương: để hôm sau bạn nhé!

19 tháng 4 2022

giúp mik vs :(((