Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cách chọn 3 nút để ấn là A 10 3 = 720 .
Số trường hợp đạt yêu cầu là: (0, 1, 9); (0, 2, 8); (0, 3, 7); (0, 4, 6); (1, 2, 7); (1, 3, 6);
(1, 4, 5) ; (2, 3, 5).
Xác xuất để B mở được cửa là 8/720 = 1/90.
Không gian mẫu: \(C_{10}^3=120\)
Ta có 8 dãy số thỏa mãn đề bài: (0;1;9);(0;2;8);(0;3;7);(0;4;6),(1;2;7);(1;3;6);(1;4;5);(2;3;5)
Xác suất:
\(P=\dfrac{8}{120}+\left(1-\dfrac{8}{120}\right).\dfrac{8}{119}+\left(1-\dfrac{8}{120}\right).\left(1-\dfrac{8}{119}\right).\dfrac{8}{118}=...\)
Để đi từ điểm tọa độ (0,0) đến tọa độ (n,m) thì cần n bước qua phải và m bước lên trên, nên cần tổng cộng \(m+n\) bước đi để đến đích.
Chọn m bước lên trên (trong tổng số \(m+n\) bước) có \(C_{m+n}^m\) cách
Còn lại n bước, chọn n cách sang phải, có \(C_n^n\) cách
Vậy tổng cộng có: \(C_{m+n}^m.C_n^n=C_{m+n}^n\) cách
Đáp án B
Phương pháp giải: Áp dụng các quy tắm đếm cơ bản
Lời giải:
Một người có 6 cách chọn quầy khác nhau => Số phần tử của không gian mẫu là n ( Ω ) = 6 5
Chọn 3 học sinh trong 5 học sinh có C 5 3 cách, chọn 1 quầy trong 6 quầy có C 6 1 cách.
Suy ra có C 5 3 . C 6 1 cách chọn 3 học sinh vào 1 quầy bất kì.
Khi đó, 2 học sinh còn lại sẽ chọn 5 quầy còn lại => có C 5 1 cách.
Do đó, số kết quả thuận lợi cho biến cố là n ( X ) = C 5 1 . C 6 1 . C 5 1
Vậy P = n ( X ) n ( Ω ) = C 5 3 . C 6 1 . C 5 1 6 5
Đáp án A
Kí hiệu học sinh các lớp 12A, 12B, 12C lần lượt là A, B, C
Ta sẽ xếp 5 học sinh của lớp 12C trước, khi đó xét các trường hợp sau:
TH1: CxCxCxCxCx với x thể hiện là ghế trống. Khi đó, số cách xếp là cách.
TH2: xCxCxCxCxC giống với TH1=> có cách xếp.
TH3: CxxCxCxCxC với xx là hai ghế trống liền nhau.
Chọn 1 học sinh lớp 12A và 1 học sinh lớp 12B vào hai ghế trống đó => cách xếp.
Ba ghế trống còn lại ta sẽ xếp 3 học sinh còn lại của 2 lớp 12A-12B => cách xếp.
Do đó, TH3 có cách xếp.
Ba TH4. CxCxxCxCxC.
TH5. CxCxCxxCxC.
TH6. CxCxCxCxCxx tương tự TH3.
Vậy có tất cả cách xếp cho các học sinh.
Suy ra xác suất cần tính là