Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H K
kẻ AH vuông góc với DC, BK vuông góc với DC
do AB song song với CD , AH song song với BK suy ra ABHK là hình bình hành
\(\Rightarrow AB=HK=3,\)\(\Rightarrow DH+KC=9-3=6\Rightarrow KC=6-DH\),\(\)
đặt DH=x
ap dung dl pitago trong tam giac vuong ADH \(AH^2+DH^2=AD^2\Rightarrow AH^2=4^2-x^2\)
tam giac vuong BKC \(BK^2+KC^2=BC^2\Rightarrow BK^2=6^2-\left(6-x\right)^2\)
ma \(BK=AH\Rightarrow BK^2=AH^2\Rightarrow\) \(4^2-x^2=6^2-\left(6-x\right)^2\Leftrightarrow16-x^2=36-36+16x-x^2\)
\(\Leftrightarrow16=16x\Rightarrow x=1\)
\(\Rightarrow AH^2=4^2-1^2=15\Rightarrow AH=\sqrt{15}\)
SABCD=\(\frac{\left(AB+DC\right)AH}{2}=\frac{\left(3+9\right)\sqrt{15}}{2}=6\sqrt{15}\)
A B C D H
a) Tính chiều cao của hình thang
Trong tam giác ADC có: AD2 + AC2 = 52 + 122 = 169
CD2 = 132 = 169
=> AD2 + AC2 = CD2 => tam giác ADC vuông tại A
Kẻ đường cao AH (H thuộc CD)
Ta có: AH.CD = AD.AC => \(AH=\frac{AD.AC}{CD}=\frac{5.12}{13}=\frac{60}{13}cm\)
b) cm AB = CD/2
\(S_{ABCD}=\frac{AH.\left(AB+CD\right)}{2}=45\Rightarrow AB=\frac{45}{\frac{AH}{2}}-CD=\frac{45}{\frac{60}{13}:2}-13=\frac{13}{2}cm\)
=> AB = CD/2
Ta áp dụng công thức Brahmagupta để tính
\(s=\frac{\sqrt{\left(AB^2+CD^2+BD^2+AC^2\right)+8\cdot AB\cdot CD\cdot BD\cdot AC-2\left(AB^4+CD^4+BD^4+AC^4\right)}}{4}\)
A) Thay số vào ta đc \(S=6\sqrt{55}\approx44,4972\left(cm^2\right)\)
b) \(S\approx244,1639\left(cm^2\right)\)
hok tốt ...
Công thức Brahmagupta là công thức tính diện tích của một tứ giác nội tiếp (tứ giác mà có thể vẽ một đường tròn đi qua bốn đỉnh của nó) mà hình thang ko có đường tròn nào đi qua đủ bốn đỉnh của nó nên công thức này ko được áp dụng vào bài này
diện tích hình thang ABCD là:
(4+9)*5:2=32,5(cm2)
đáp số:32,5cm2
cick cho mk nhé!
Kẻ đường cao AH và đường cao BK . ⇒AB=HK=1cm
Nên ta có : DH+CK=4 (1)
Theo tỉ số lượng giác cho tam giác ADH và BCK ta lại có :
\(\left\{{}\begin{matrix}AH=tan60\cdot DH\\BK=tan30\cdot CK\end{matrix}\right.\)\(\Rightarrow tan60\cdot DH=tan30\cdot CK\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình :
\(\left\{{}\begin{matrix}DK+CK=4\\\sqrt{3}DH-\dfrac{\sqrt{3}}{3}CK=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=1\\CK=3\end{matrix}\right.\)
\(\Rightarrow AH=tan60\cdot DH=\sqrt{3}\cdot1=\sqrt{3}\left(cm\right)\)
\(\Rightarrow S_{ABCD}=12\cdot AH\cdot\left(AB+CD\right)=12\cdot\sqrt{3}\cdot\left(1+5\right)=3\sqrt{3}\left(cm^2\right)\)
Tick hộ nha bạn 😘
sai đề r bẠN