K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Tam giác EAB đồng dạng với tam giác CDE (tam giác vuông, ch-cgv) suy ra góc ABE = góc DEC và góc AEB = góc ECD. Mà ABE + AEB =90 độ nên thay vào ta có DEC + ECD = BEC = 90 độ

14 tháng 3 2018

Chỉnh sửa: DEC + ECD = 90, mà DEC + ECD + BEC = 180 trừ ra ta có BEC = 90

21 tháng 6 2018

Kẻ \(BH\perp CD\left(H\in CD\right)\)

Ta có: ABHD là hình chữ nhật => BH=AD=12 và DH=AB=11

Áp dụng định lí Pytago vào tam giác vuông BHC tại H có: \(HC=\sqrt{BC^2-BH^2}=\sqrt{13^2-12^2}=5\)

=> CD=DH+HC=11+5=16

Áp dụng định lí Pytago vào tam giác vuông ADC tại D có: \(AC=\sqrt{AD^2+CD^2}=\sqrt{12^2+16^2}=20\)

Vậy AC=20cm

20 tháng 6 2017
Kẻ đường cao BH (H thuộc CD). Khi đó Tứ giác ABHD là hình vuông (Tứ giác có 3 góc vuông và hai cạnh kề bằng nhau). Suy ra BH = AB = 2 Trong tam giác vuông BHC có BH =1/2 BC nên tam giác BHC là nửa tam giác đều. Suy ra \(\widehat{HBC}=60^0va\widehat{C}=30^o\) Vậy các góc của hình thang là: \(\widehat{A}=\widehat{D}=90^o;\widehat{B}=150^o;\widehat{C}=30^o\)
29 tháng 6 2017

Hình thang

4 tháng 9 2018

Kẻ \(BH\perp CD\)

Mà \(CD\perp AD\left(gt\right)\Rightarrow BH//AD\)

Hình thang ABHD (AB//HD) có BH//AD nên \(\hept{\begin{cases}HD=AB=5\left(cm\right)\\BH=AD\end{cases}}\) (t/c hình thang)

\(HD+HC=DC\Rightarrow5+HC=9\Rightarrow HC=4\left(cm\right)\)

\(\Delta HBC\)vuông cân tại H nên \(HB=HC=4cm\Rightarrow AD=4cm\left(AD=BH\right)\)

Áp dụng định lí Pitago tính được \(BC=\sqrt{32}\left(cm\right)\)

Chu vi hình thang vuông ABCD là: 

          \(AB+BC+CD+AD=5+\sqrt{32}+9+4=18+\sqrt{32}\left(cm\right)\)

Chúc bạn học tốt.