\(\widehat{A}=\widehat{D}=90^0;AB=AD=2cm;DC=4cm\)

Tính c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017
Kẻ đường cao BH (H thuộc CD).
Khi đó Tứ giác ABHD là hình vuông (Tứ giác có 3 góc vuông và hai cạnh kề bằng nhau).
Suy ra BH = AB = 2
Trong tam giác vuông BHC có BH =1/2 BC nên tam giác BHC là nửa tam giác đều.
Suy ra \(\widehat{HBC}=60^0va\widehat{C}=30^o\)
Vậy các góc của hình thang là: \(\widehat{A}=\widehat{D}=90^o;\widehat{B}=150^o;\widehat{C}=30^o\)
29 tháng 6 2017

Hình thang

16 tháng 1 2020

A B C D 2cm E 4cm 45

Kẻ \(BE\perp CD\)

Xét \(\Delta BEC\)vuông tại E có :

\(\widehat{BEC}=90^o\) ( theo cách vẽ )

Mà \(\widehat{C}=45^o\)(gt)

\(\Rightarrow\Delta BEC\)vuông cân tại E

\(\Rightarrow BE=EC\)( tính chất tam giác vuông cân )

Hay \(BE\perp DC\)(1)

Vì \(\widehat{D}=90^o\left(gt\right)\)

\(\Rightarrow AD\perp DC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AD//BE\)( từ vuông góc đến song song )

Hình thang \(ABED\) có \(AD//BE\left(cmt\right)\)

\(\Rightarrow AB=DE\)( theo nhận xét của hình thang )
Mà \(AB=2cm\left(gt\right)\)

 \(\Rightarrow AB=DE=2cm\)

Ta có \(EC=CD-BE\)

\(\Rightarrow EC=4-2\)

\(\Rightarrow EC=2cm\)

Mà BE = EC (cmt)

\(\Rightarrow BE=2cm\)

\(\Rightarrow S_{ABCD}=\frac{1}{2}\left(AB+CD\right).BE=\frac{1}{2}.\left(2+4\right).2=\frac{1}{2}.6.2=6\left(cm^2\right)\)

Vậy \(S_{ABCD}=6\left(cm^2\right)\)

Chúc bạn học tốt !!!

29 tháng 6 2017

Dựng hình bằng thước và compa. Dựng hình thang

25 tháng 6 2017

kẻ BH vuông góc với CD

ta có ^D +^H =180o (^D =90o, ^H= 90o)

mà 2 góc này nằm ở vị trí trong cùng phía => AD//BH(2 cạnh bên)

=> AD =BH =2cm , AB =DH = 2cm

ta có DC = 4cm và DH+HC =DC

mà DH =2cm

=> HC =2cm

ta có tam giác BHC vuông cân tại H ( BH =CH ,^H = 90o)

=> ^C =^B ( 2 góc đáy ) lại có ^C+^B+^H =180o(tổng 3 góc tam giác)

=> ^C =^B = 45o

=> ^B = 135o

25 tháng 6 2017
Kẻ đường cao BH (H thuộc CD). Khi đó Tứ giác ABHD là hình vuông (Tứ giác có 3 góc vuông và hai cạnh kề bằng nhau). Suy ra BH = AB = 2 Trong tam giác vuông BHC có BH = \(\dfrac{1}{2}\) BC nên tam giác BHC là nửa tam giác đều. Suy ra \(\widehat{HBC}=60^o\)\(\widehat{C}=30^o\) Vậy các góc của hình thang là: \(\widehat{A}=\widehat{D}=90^o;\widehat{B}=150^o;\widehat{C}=30^o\)
25 tháng 6 2017

đăng trùng

4 tháng 6 2017

Ta có hình vẽ: A B C D

Vì AB//CD

nên góc A+ góc D = 180 độ (1)

góc A - góc D = 20 độ

=> góc A = 20 độ + góc D (2)

thay (1) vào (2) ta được: 20 độ + góc D + góc D = 180 độ

20 độ + 2 lần góc D = 180 độ

2 lần góc D = 180- 20 = 160 độ

góc D = 160/2 = 80 độ

=> góc A = góc D + 20 độ = 80+ 20= 100 độ

mà góc B = 2 lần góc C

góc B + góc C = 180 độ (trong cùng phía)

hay 2 lần góc C + góc C = 180 độ

3 lần góc C = 180 độ

góc C = 180/ 3= 60 độ

=> góc B = góc C . 2 = 60. 2= 120 độ

Vậy góc A= 100 độ

góc B = 120 độ

góc C = 60 độ

góc D = 80 độ

21 tháng 4 2017

Bài giải:

Ta có ˆAˆD=A^−D^=200; ˆA+ˆD=A^+D=^ 1800

Từ ˆAˆD=A^−D^=200

=> ˆAA^= 200 +ˆDD^

Nên ˆA+ˆD=A^+D^= 200 + ˆDD^ +ˆDD^=200 +2 ˆDD^ =1800

=> 2ˆDD^=1600 => ˆDD^= 800

Thay ˆDD^= 800 vào ˆAA^= 200 +ˆDD^ ta được ˆAA^=200 + 800 = 1000

Lại có ˆB=2ˆCB^=2C^ ; ˆB+ˆC=B^+C^=1800

nên 2ˆC+

2 tháng 9 2018

Hình thang

Ta có :AB//CD\(\Rightarrow\widehat{A}+\widehat{D}=180^o\) (do 2 góc ở vị trí trong cùng phía )

Từ \(\widehat{A}-\widehat{D}=20^o\Rightarrow\widehat{A}=20^o+\widehat{D}\) \(^{\left(1\right)}\)

Nên \(\widehat{A}+\widehat{D}=20^o+\widehat{D}+\widehat{D}=20^o+2.\widehat{D}=180^o\)

\(\Rightarrow2\widehat{D}=160^o\Rightarrow\widehat{D}=80^o\)

Thay \(\widehat{D}=80^o\) vào \(^{\left(1\right)}\) , ta được:

\(\widehat{A}=20^o+80^o=100^o\)

Lại có:\(\widehat{B}+\widehat{C}=180^o\) (do 2 góc ở vị trí trong cùng phía )

\(\widehat{B}=2.\widehat{C}\)

nên \(2.\widehat{C}+\widehat{C}=180^o\) hay \(3.\widehat{C}=180^o\Rightarrow\widehat{C}=60^o\)

Do đó: \(\widehat{B}=2.\widehat{C}=2.60^o=120^o\)

Vậy \(\widehat{A}=100^o;\widehat{B}=120^o;\widehat{C}=60^o;\widehat{D}=80^o\)