Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
1 - x² ≥ 0 và x - 1 ≥ 0
⇔ x² ≤ 1 và x ≥ 1
⇔ -1 ≤ x ≤ 1 và x ≥ 1
⇔ x = 1
a)Ta có:
`hat{BFC}` là góc chẵn nửa (O)
`=>hat{BFC}=90^o`
Tương tự:`hat{BEC}=90^o`
Xét tam giác ABC có:
`CFbotAB(CMT)`
`AEbotAC(CMT)`
Mà CF cắt BE tại H
`=>H` là trực tâm tam giác ABC
`=>AHbotBC`
Hay `AD bot BC`
Vì `hat{BFH}=hat{BDH}=90^o`
`=>hat{BFH}+hat{BDH}=180^o`
`=>` tg BFHD nt
`=>hat{DFC}=hat{DBE}`
b)Vì `hat{EBC}=hat{EFC}`(cùng chắn cung EC nhỏ)
Mà tg BFHD nt
`=>hat{DFH}=\hat{HBD}`
`=>hat{DFH}=hat{EFC}`
`=>` FC là pg `hat{EFD}`
Vì `FC` là pg `hat{EFD}`
`=>hat{EFD}=2hat{DFH}`
Mà `hat{DFH}=hat{HBD}`
`=>hat{EFD}=2hat{DBH}`
Mà `hat{EOC}=2hat{DBH}`(góc nội tiếp và góc ở tâm)
`=>hat{EFD}=hat{EOC}`
`=>` tg OEFD nt (do trong = góc ngoài tại đỉnh đối)
a: ta có: ΔOBC cân tại O
mà OA là đường cao
nên OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O)
b: Ta có: OA//BD
BC\(\perp\)OA
Do đó: BD\(\perp\)BC
=>ΔBDC vuông tại B
Ta có: ΔBDC vuông tại B
=>ΔBDC nội tiếp đường tròn đường kính CD
mà ΔBDC nội tiếp (O)
nên CD là đường kính của (O)
c: Xét (O) có
ΔDEC nội tiếp
DC là đường kính
Do đó: ΔDEC vuông tại E
=>EC\(\perp\)ED tại E
=>CE\(\perp\)AD tại E
Xét ΔCDA vuông tại C có CE là đường cao
nên \(AE\cdot AD=AC^2\left(1\right)\)
Xét ΔCOA vuông tại C có CH là đường cao
nên \(AH\cdot AO=AC^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{EAH}\) chung
Do đó: ΔAEH đồng dạng vớiΔAOD
=>\(\widehat{AEH}=\widehat{AOD}\)
mà \(\widehat{AEH}+\widehat{DEH}=180^0\)(hai góc kề bù)
nên \(\widehat{DEH}+\widehat{AOD}=180^0\)
=>\(\widehat{DEH}+\widehat{DOH}=180^0\)
=>DEHO là tứ giác nội tiếp
=>\(\widehat{ODH}=\widehat{OEH}\)
a: góc CAO+góc CMO=180 độ
=>CAOM nội tiếp
b: Xét (O) có
CA,CM là tiếp tuyến
=>CA=CM và OC là phân giác của góc MOA(1)
Xét (O) co
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
CD=CM+MD=CA+DB
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: AC*BD=CM*MD=OM^2=R^2
Bài 9:
a: Xét tứ giác OPMN có
góc OPM+góc ONM=180 độ
=>OPMN là tứ giác nội tiếp
b: \(MN=\sqrt{10^2-6^2}=8\left(cm\right)\)
c: ΔOAB cân tại O
mà OH là đường trung tuyến
nên OH vuông góc AB
Xét tứ giác OHNM có
góc OHM=goc ONM=90 độ
=>OHNM là tứ giác nội tiép
=>góc MHN=góc MON