Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: BC=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>BH=36/10=3,6(cm)
=>CH=6,4(cm)
Bạn tự vẽ hình nhé.
a) Ta có: EF, FG; GN; NE lần lượt là đường trung bình của \(\Delta ABC;\Delta BCD;\Delta CDA;\Delta DAB\)
\(\Rightarrow\hept{\begin{cases}EF=\frac{1}{2}AB;EF//AC\\GN=\frac{1}{2}AB;GN//AC\\FC//BC\end{cases}}\Rightarrow AC\perp BD\)
\(\Rightarrow\hept{\begin{cases}EFGH\text{ là HBH}\\AC\perp BD\\FG//BD;EF//AC\end{cases}}\Rightarrow EF\perp FG\)
=> EFGH là HCN
b) Dựa câu a) để làm nhé
a) Ta có :
AD = BC = 6 cm
Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :
1/AD^2 + 1/AB^2 = 1/AH^2
<=> 1/6^2 + 1/8^2 = 1/AH^2
<=> AH = 4,8(cm)
b)
Áp dụng Pitago trong tam giác BCD vuông tại C có :
BC^2 + CD^2 = BD^2
<=> 6^2 + 8^2 = DB^2
<=> BD = 10(cm)
Xét hai tam giác vuông AHB và BCD có :
AH/BC = 4,8/6 = 4/5
AB/BD = 8/10 = 4/5
Do đó tam giác AHB đồng dạng với tam giác BCD