Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
a/ Xét tg HBA và tg ABC, có:
góc BHA = góc BAC = 90 độ
góc B chung
Suyra: tg HBA đồng dạng với tg ABC (g-g)
b/ Ta có tg ABC vuông tại A:
\(BC^2=AC^2+AB^2\)
\(BC^2=8^2+6^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\)(cm)
Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)
\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)
\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)
A B D C K I H M 1 2 1 2
Hình trừu tượng thôi nha!
a) Xét △ADH và △BDA có
gócA=gócH=900
góc D chung
=> △ADH \(\sim\) △BDA(g-g)
=>\(\frac{AD}{BD}=\frac{DH}{AD}\Rightarrow AD^2=BD.DH\)(dpcm)
Xét △ABD có
\(AD^2+BA^2=BD^2\)(dl pi-ta-go)
\(\Leftrightarrow BD^2=6^2+8^2=100\Rightarrow BD=10\left(cm\right)\)
lại có: \(\frac{AH}{AB}=\frac{DH}{AD}=\frac{AD}{BD}=\frac{6}{10}=\frac{3}{5}\)
Hay \(\left\{{}\begin{matrix}\frac{AH}{8}=\frac{3}{5}\\\frac{DH}{6}=\frac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\frac{24}{5}\left(cm\right)\\DH=\frac{18}{5}\left(cm\right)\end{matrix}\right.\)
a) Xét ΔABD vàΔ HAD có:
\(\widehat{DAB}\) =\(\widehat{AHB}\)= 90o( gt)
\(\widehat{D}\) chung
⇒Δ ABD ∼ ΔHAD(g-g)
b) Áp dụng định lí Py-ta-go vào Δ ABD vuông tại A ta có:
BD=\(\sqrt{AD^2+AB^2}\)=\(\sqrt{3^2+4^2}\)=\(\sqrt{25}\)=5(cm)
Theo câu a ta có:Δ ABD ∼ ΔHAD
⇒\(\dfrac{BD}{AD}\)=\(\dfrac{AD}{HD}\)hay \(\dfrac{5}{3}\)=\(\dfrac{3}{HD}\)⇒HD=\(\dfrac{3.3}{5}\)=1,8 (cm)