Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D C K I H M 1 2 1 2
Hình trừu tượng thôi nha!
a) Xét △ADH và △BDA có
gócA=gócH=900
góc D chung
=> △ADH \(\sim\) △BDA(g-g)
=>\(\frac{AD}{BD}=\frac{DH}{AD}\Rightarrow AD^2=BD.DH\)(dpcm)
Xét △ABD có
\(AD^2+BA^2=BD^2\)(dl pi-ta-go)
\(\Leftrightarrow BD^2=6^2+8^2=100\Rightarrow BD=10\left(cm\right)\)
lại có: \(\frac{AH}{AB}=\frac{DH}{AD}=\frac{AD}{BD}=\frac{6}{10}=\frac{3}{5}\)
Hay \(\left\{{}\begin{matrix}\frac{AH}{8}=\frac{3}{5}\\\frac{DH}{6}=\frac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\frac{24}{5}\left(cm\right)\\DH=\frac{18}{5}\left(cm\right)\end{matrix}\right.\)
a) vì ABCD là hình chữ nhật
nên AB // DC => góc ABH= góc BDC ( 2 góc so le trong )
Xét 2 tam giác AHB và BCD có
góc ABH = góc BDC
góc AHB = góc BCD =900
=> 2 tam giác AHB và BCD đồng dạng (g.g)
b) Xét 2 tam giác ADH và BDA có
góc ADH chung
góc AHD = góc BAD =900
nên 2 tam giác ADH và BDA là 2 tam giác đồng dạng (g.g)
=> \(\frac{AD}{BD}=\frac{DH}{AD}\)
=> AD2=BD.DH
tam giác ABD vuông tại A
=> \(BD^2=AD^2+AB^2\)( Py-ta-go)
=>BD =10cm
mà AD2=DH.BD (cmt)
=> 62=DH.10
=> DH =3.6cm
tam giác ADH vuông tại H nên AD2=AH2+DH2 ( py-ta-go)
<=> 62-3.62=AH2
AH=\(\sqrt{6^2-3.6^2}\)=4.8cm
a) Xét tam giác AHD và tam giác BHA có:
ADH = BAH ( cùng phụ với DAH )
DAH = ABH ( cùng phụ với BAH )
=> tam giác AHD đồng dạng với BHA (g.g)
b) Xét tam giác ABH và tam giác DBA có:
Chung góc B; BHA = BAD(=90 độ)
=> tam giấc ABH đồng dạng tam giác DBA (g.g)
c)
a, Xét tam giác ABD(góc BAD=90 độ) và tam giác AHD(góc AHD =90 độ) có: góc ADB chung
=> Tam giác ABD đồng dạng với tam giác AHD