
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
DO đó: F là trung điểm của AC
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
hay BEFC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BEFC là hình thang cân

Xét \(\Delta ABC\)có:
DB = DA (giả thiết)
AE = CE (giả thiết)
\(\Rightarrow DE\)là đường trung bình của \(\Delta ABC\)
\(DE//BC\)(tính chất) \(\Rightarrow DE//BF\)(1)
Và \(2DE=BC\)(tính chất)
Mà \(2BF=BC\)(vì \(BF=CF\))
\(\Rightarrow2DE=2BF\Rightarrow DE=BF\)(2)
Xét tứ giác BDEF có: (1) và (2).
\(\Rightarrow BDEF\)là hình bình hành.
Vậy BDEF là hình bình hành.

hình tự vẽ nha bạn
a) tam giác ABC có E là tđ của AB,D là tđ của AC
=> ED là đtb của tam giác ABC
=> ED// BC và ED=1/2BC (1)
=> tứ giác BEDC là hình thang
b) tam giác GBC có M là tđ của GB,N là tđcủa GC
=> MN là đtb của tam giác GBC
=> MN//BC và MN=1/2BC (2)
từ (1),(2)=> ED//MN và ED=MN
=> tứ giác MEDN là hbh
c) tứ giác MEDN là hcn <=> MEDN là hbh có 2 đường chéo bằng nhau
<=> EN=DM
mà EN=2/3EC,DM=2/3DB=> EC=BD
hình thang BEDC có EC=BD=> BEDC là h thang cân => góc EBC=DCB
=> tam giác ABC cân tại A
vậy tam giác ABC cân tại A thì ......
d) kẻ đường cao AH
gọi O là gđ của AH và ED
tam giác AHB có E là tđ của AB,EO//BH (ED//BC)
=> O là tđ của AH
=> OH=1/2AH
Sbedc=1/2(ED+BC).OH
=1/2.(1/2BC+BC).1/2AH
=1/2.3/2BC.1/2AH
=3/4BC.1/2AH
=3/8BC.AH
=1/2.AH.BC.3/4
=3/4 Sabc

bạn tự vẽ hình nha
a)Trong tam giác ABC có: E là trung điểm của AB; D là trung điểm của AC
=> ED là đường trung bình của ABC
=> ED//BC và ED=\(\frac{1}{2}\)BC (1)
=> tứ giác BEDC là hình thang
b) Trong tam giác CBG có: M là trung điểm của GB; N là trung điểm của GC
=> MN là đường trung bình của tam giác CBG
=> MN//BC và MN=\(\frac{1}{2}\)BC (2)
Từ (1) và (2) => ED//MN và ED = MN
=> tứ giác MEDN là hình bình hành
c) Tứ giác MEDN là hcn <=> MEDN là hbh
Có 2 đường chéo bằng nhau <=> EN = DM
Mà EN = \(\frac{2}{3}\)EC; DM = \(\frac{2}{3}\)DB
Lại có: hình thang BEDC có EC = BD
=> BEDC là hình thang cân tại A
Vậy tam giác ABC tại thì tứ giác MEDN là hcn

Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên
Chọn D