K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2022

S A B C D H E K F

Ta có

\(SH\perp\left(ABCD\right);SH\in\left(SBD\right)\Rightarrow\left(SBD\right)\perp\left(ABCD\right)\)

Trong mp (ABCD) từ C dựng đường thẳng vuông góc với BD cắt BD tại F ta có

\(SH\perp\left(ABCD\right);CF\in ABCD\Rightarrow SH\perp CF\)

Mà \(CF\perp BD\)

Ta có \(BD\in\left(SBD\right);SH\in\left(SBD\right)\)

\(\Rightarrow CF\perp\left(SBD\right)\) => CF là khoảng cách từ C đến (SBD)

Trong mp (ABCD) nối CH cắt AD tại E

Ta có BC//AD \(\Rightarrow\dfrac{BC}{ED}=\dfrac{HB}{HD}=\dfrac{HC}{HE}=1\Rightarrow ED=BC=\dfrac{3a}{2}\)

\(\Rightarrow EA=AD-ED=3a-\dfrac{3a}{2}=\dfrac{3a}{2}=BC\)

Mà BC//AE và \(\widehat{ABC}=90^o\)

=> ABCE là hình chữ nhật 

Trong mp (ABCD) từ H dựng đường thẳng vuông góc với CD cắt CD tại K

Xét tg vuông CDE có

\(CD=\sqrt{CE^2+ED^2}=\sqrt{4a^2+\dfrac{9a^2}{4}}=\dfrac{5a}{2}\)

Xét tg vuông ABD có

\(BD=\sqrt{AB^2+AD^2}=\sqrt{4a^2+9a^2}=a\sqrt{13}\)

\(\Rightarrow HB=HD=\dfrac{BD}{2}=\dfrac{a\sqrt{13}}{2}\)

Xét tg vuông CKH và tg vuông CED có \(\widehat{ECD}\) chung

=> tg CKH đồng dạng với tg CED (g.g.g)

\(\Rightarrow\dfrac{CK}{CE}=\dfrac{HC}{CD}\Rightarrow CK=\dfrac{CE.HC}{CD}=\dfrac{2a.a}{\dfrac{5a}{2}}=\dfrac{4a}{5}\)

Xét tg vuông CKH có

\(HK=\sqrt{HC^2-CK^2}=\sqrt{a^2-\dfrac{16a^2}{25}}=\dfrac{3a}{5}\)

Xét tg vuông DKH và tg vuông DFC có \(\widehat{BDC}\) chung

=> tg DKH đồng dạng với tg DFC (g.g.g)

\(\Rightarrow\dfrac{HK}{CF}=\dfrac{HD}{CD}\Rightarrow CF=\dfrac{HK.CD}{HD}=\dfrac{\dfrac{3a}{5}.\dfrac{5a}{2}}{\dfrac{a\sqrt{13}}{2}}=\dfrac{3a\sqrt{13}}{13}\)

 

 

 

 

22 tháng 2 2021

Ta có \(\frac{d\left(A,\left(SCD\right)\right)}{d\left(M,\left(SCD\right)\right)}=2\Rightarrow d=\left(m,\left(SCD\right)\right)=\frac{1}{2}d\left(A,\left(SCD\right)\right)\)

Dễ thấy AC _|_ CD, SA _|_ CD dựng AH _|_ SA => AH _|_ (SCD)

Vậy d(A,(SCD))=AH

Xét tam giác vuông SAC (A=1v) có \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AS^2}\Rightarrow AH=\frac{a\sqrt{6}}{3}\)

Vậy suy ra \(d\left(M,\left(SCD\right)\right)=\frac{a\sqrt{6}}{3}\)

E=AB∩CD,G=EN∩SB⇒G là trọng tâm tam giác SAE.

d(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14h 

Tứ diện AEND vuông tại đỉnh A nên 1h2=1AN2+1AE2+1AD2=116a2⇒h=a6611 

Vậy d(M,(NCD))=a6644. 

12 tháng 7 2019

Đáp án B

Ta có d(K;(SCD))

Ta có 

Có góc giữa SC và đáy là  nên ta có 

Ta có 

13 tháng 2 2018

ĐÁP ÁN C

23 tháng 5 2020

3+? =2 trả lời đc thì giải đc

10 tháng 8 2018

Đáp án B.

Ta có AD//BC, => AD//(SBC)

=> d(AD;SC) = d(AD;(SBC)) = d(D;(SBC)).

Qua I kẻ đường thẳng song song với AD, cắt CD tại H.

Suy ra IH ⊥ CD

Từ CD ⊥ IH, CD ⊥ SI=> CD ⊥ (SIH)=> CD ⊥ SH

Suy ra 

Lại có 

Từ 

Suy ra 

Từ (1) và (2), suy ra 

Vậy 

9 tháng 12 2019

Đáp án C

Gọi M là trung điểm của CD. Kẻ HK vuông góc với SM.

Ta có: 

Mặt khác ta có HK ⊥ SM

Suy ra HK(SCD)

Vậy 

Xét tam giác BHC vuông tại B, ta có:

Xét tam giác SHM vuông tại H, ta có: 

14 tháng 5 2022

????