K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

không gian mẫu bằng 9!

xếp 6 hs lớp 11 có 6 cách nên là 6!

( số người bằng ghế thì ko quan tâm số ghế)

=> xung quang đó có dư 7 khoảng trống

vậy để xen kẻ 3 hs lớp 12 vào 7 chỗ thì là chỉnh hợp A37

n(A)= 6!. A37=151200

=> đáp án C

26 tháng 10 2023

a: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔDSB có

M,O lần lượt là trung điểm của DS,DB

Do đó: MO là đường trung bình

=>MO//SB và MO=SB/2

SB//MO

\(MO\subset\left(MAC\right)\)

SB không nằm trong mp(MAC)

Do đó: SB//(MAC)

b: Xét ΔABC có

N,O lần lượt là trung điểm của AB,AC

=>NO là đường trung bình

=>NO//BC

mà BC\(\subset\left(SBC\right)\)

và NO không nằm trong mp(SBC)

nên NO//(SBC)

MO//SB

\(SB\subset\left(SBC\right)\)

MO không nằm trong (SBC)

Do đó: MO//(SBC)

mà NO//(SBC)

và \(MO,NO\subset\left(MON\right)\)

nên \(\left(MON\right)\)//(SBC)

=>MN//(SBC)

2 tháng 1 2023

D

22 tháng 11 2023

\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[3]{x+6}-\sqrt{x+2}}{x^2-4}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\sqrt[3]{x+6}-2+2-\sqrt{x+2}}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{x+6-8}{\sqrt[3]{\left(x+6\right)^2}+2\cdot\sqrt[3]{x+6}+4}+\dfrac{4-x-2}{2+\sqrt{x+2}}}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(\dfrac{1}{\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4}-\dfrac{1}{2+\sqrt{x+2}}\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{1}{\sqrt[3]{\left(x+6\right)^2}+2\cdot\sqrt[3]{x+6}+4}-\dfrac{1}{2+\sqrt{x+2}}}{x+2}\)

\(=\dfrac{\dfrac{1}{\sqrt[3]{\left(2+6\right)^2}+2\cdot\sqrt[3]{2+6}+4}-\dfrac{1}{2+\sqrt{2+2}}}{2+2}\)

\(=\dfrac{\dfrac{1}{\sqrt[3]{64}+2\cdot\sqrt[3]{8}+4}-\dfrac{1}{2+2}}{4}\)

\(=\dfrac{\dfrac{1}{4+2\cdot2+4}-\dfrac{1}{4}}{4}=\left(\dfrac{1}{16}-\dfrac{1}{4}\right):4=\left(\dfrac{1}{16}-\dfrac{4}{16}\right)\cdot\dfrac{1}{4}=\dfrac{-3}{64}\)

NV
14 tháng 9 2021

c.

ĐKXĐ: \(sinx\ne0\Rightarrow x\ne k\pi\)

\(1-\dfrac{\sqrt{3}cosx}{sinx}-4cosx=0\)

\(\Rightarrow sinx-\sqrt{3}cosx-4sinx.cosx=0\)

\(\Leftrightarrow sinx-\sqrt{3}cosx=2sin2x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin2x\)

\(\Leftrightarrow sin2x=sin\left(x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x-\dfrac{\pi}{3}+k2\pi\\2x=\dfrac{4\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

NV
14 tháng 9 2021

a.

\(\Leftrightarrow3sin3x-4sin^34x-\sqrt{3}cos9x=2sin2x\)

\(\Leftrightarrow sin9x-\sqrt{3}cos9x=2sin2x\)

\(\Leftrightarrow\dfrac{1}{2}sin9x-\dfrac{\sqrt{3}}{2}cos9x=sin2x\)

\(\Leftrightarrow sin\left(9x-\dfrac{\pi}{3}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-\dfrac{\pi}{3}=2x+k2\pi\\9x-\dfrac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{21}+\dfrac{k2\pi}{7}\\x=\dfrac{4\pi}{33}+\dfrac{k2\pi}{11}\end{matrix}\right.\)

NV
18 tháng 6 2021

1.

\(-1\le sin\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow1\le y\le5\)

\(y_{min}=1\) khi \(sin\left(x-\dfrac{\pi}{2}\right)=-1\)

\(y_{max}=5\) khi \(sin\left(x-\dfrac{\pi}{2}\right)=1\)

2.

\(-1\le cos2x\le1\Rightarrow\dfrac{5}{2}\le y\le\dfrac{7}{2}\)

\(y_{min}=\dfrac{5}{2}\) khi \(cos2x=1\)

\(y_{max}=\dfrac{7}{2}\) khi \(cos2x=-1\)

NV
18 tháng 6 2021

3.

\(0\le cos^2\left(2x+\dfrac{\pi}{3}\right)\le1\Rightarrow-2\le y\le-1\)

\(y_{min}=-2\) khi \(cos\left(2x+\dfrac{\pi}{3}\right)=\pm1\)

\(y_{max}=-1\) khi \(cos\left(2x+\dfrac{\pi}{3}\right)=0\)

4.

\(-1\le cos\left(4x^2\right)\le1\Rightarrow-2\le y\le\sqrt{2}-2\)

\(y_{min}=-1\) khi \(cos\left(4x^2\right)=-1\)

\(y_{max}=\sqrt{2}-2\) khi \(cos\left(4x^2\right)=1\)