Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ sai hình rồi nghe, kẻ BK//CH //d với K,H thuộc AO( O là tđ BC) Gọi M,N là giao điểm AB,AC với d
Có BK//CH nên \(\Delta BOK=\Delta COH\left(g-c-g\right)\)
Suy ra OK=OH
Ta có BK//CH//d nên \(\frac{BM}{AM}=\frac{GK}{AG}\left(1\right)\),\(\frac{NC}{AN}=\frac{HG}{AG}\left(2\right)\)
Cộng (1) và (2) đc \(\frac{BM}{AM}+\frac{NC}{AN}=\frac{GK+GH}{AG}=\frac{OG-OK+OG+OH}{AG}=\frac{2OG}{AG}=2.\frac{1}{2}=1\)
Mà BB'//AA' ( cùng vuông góc d)\(\Rightarrow\frac{BM}{AM}=\frac{BB'}{AA'}\left(3\right)\)
Tương tự cũng có AA'//CC' \(\Rightarrow\frac{NC}{AN}=\frac{CC'}{AA'}\left(4\right)\)
Cộng (3) và (4) có \(\frac{BM}{AM}+\frac{NC}{AN}=\frac{BB'+CC'}{AA'}=1\Rightarrow BB'+CC'=AA'\)
Gọi số cạnh của đa giác là 10 + k( \(k\in\)N* )
\(\Rightarrow\frac{\left(10+k\right)\left(10+k+3\right)}{2}< 60\)
\(\Rightarrow\frac{\left(10+k\right)\left(13+k\right)}{2}< 60\)
\(\Rightarrow\frac{130+10k+13k+k^2}{2}< 60\)
\(\Rightarrow\frac{130+23k+k^2}{2}< 60\)
\(\Rightarrow130+23k+k^2< 120\)
\(\Rightarrow k^2+2.k.\frac{23}{2}+\frac{23^2}{2^2}+\frac{1551}{16}< 120\)
\(\Rightarrow\left(k+11,5\right)^2< \frac{369}{16}< \frac{400}{16}\)
\(\Rightarrow\left(k+11,5\right)^2< 5^2\) (1)
Mà \(k\in\)N*
=> k+11 , 5 > 11,5 > 5
\(\Rightarrow\left(k+11,5\right)^2>5^2\) (2)
So sánh (1) và (2)
=> Mâu thuẫn .
Vậy không có đa giác cần tìm .
Đề bài: \(B=\frac{14x^2-8x+9}{3x^2+6x+9}\) Tìm GTNN của B lần sau bạn chụp
=> chụp mỗi cái đề thôi=> lớn dẽ nhìn.
\(3x^2+6x+9=3\left[\left(x-\frac{3}{2}\right)^2+3-\frac{9}{4}\right]\)>0 => B tồn tại với mọi x:
\(B=\frac{14\left(x^2+2x+3\right)-28x-14.3-8x+9}{3\left(x^2+2x+3\right)}=\frac{14\left(x^2+2x+3\right)-36x-33}{3\left(x^2+2x+3\right)}\)
\(B=\frac{14}{3}-\frac{12x+11}{\left[\left(x+1\right)^2+2\right]}=\frac{14}{3}-\frac{12\left(x+1\right)-1}{\left(x+1\right)^2+2}\)
xét : \(C=\frac{12y-1}{y^2+2}\)
B nhỏ nhất => C phải lớn nhất=> tìm GTLN của C
\(4-C=4-\frac{12y-1}{y^2+2}=\frac{4y^2-12y+9}{y^2+2}=\frac{\left(2y-3\right)^2}{y^2+2}\ge0\)
đẳng thức khi \(y=\frac{3}{2}\Rightarrow x=\frac{3}{2}-1=\frac{1}{2}\)
Vậy: ta có \(C_{max}=4\Rightarrow B\ge\frac{14}{3}-4=\frac{2}{3}\)
Kết luận: GTNN của B=2/3 khi x=1/2
Có: x2+x+1\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) với mọi x
=>x3+x2+x+1>x3
=>y3>x3 (1)
Lại có (x+2)3-(x3+x2+x+1)
=x3+8+6x2+12x-x3-x2-x-1=5x2+11x+7=\(5\left(x^2+\frac{11}{5}x+\frac{7}{5}\right)=5\left(x^2+2.x.\frac{11}{10}+\frac{121}{100}+\frac{19}{100}\right)=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}>0\) với mọi x
=>(x+2)3 \(\ge\) x3+x2+x+1 (2)
Từ (1),(2)
=>x3<y3<(x+2)3
=>y3=(x+1)3 => x3+x2+x+1=(x+1)3
=>x2(x+1)+(x+1)-(x+1)3=0
=>(x2+1)(x+1)-(x+1)3=0
=>(x+1)x=0=>x=0 hoặc x=-1
+x=0 thì y=1
+x=-1 thì y=0
Vậy (x;y)=...............
Ta có: a-b =1
b-c=1
=>a-c=2 => c = a-2
c^2 -ab = 79
(a-2)^2 -ab = 79
a^2 - 4a + 4 -ab = 79
a^2 - 4a -ab = 79-4
a(a-4-b) = 75
a(1-4) =75 (vì a-b =1)
-3a = 75 => a = -25
Giúp lần cuối ! Nho k nha !
b11 (4n+3)^2-25
=(4n+3-25)(4n+3+25)
=(4n-22)(4n+28)
b12
(2n+3)^2-9=(2n+3-3)(2n+3+3)=2n2(n+3)=4n(n+3) chia ht cho 4