Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ui, đề thi HSG huyện mình nè. cậu huyện nào mà đăng thế
chứng minh BĐT : \(a^3+b^3+1\ge ab\left(a+b\right)\) với a>0,b>0
\(\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
áp dụng BĐT trên,ta có:
\(x+y+1\ge\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\)
\(\Rightarrow\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}+\frac{1}{\sqrt[3]{xz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}\)
\(=\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{xyz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}=1\)
Dấu " = " xảy ra khi x = y = z = 1
Ap dung bdt \(a+b\ge\sqrt[3]{a^2b}+\sqrt[3]{ab^2}\left(a,b\ge0\right)\)
ta co \(x+y\ge\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)\)
ma \(xyz=1=>\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)
nen \(x+y\ge\frac{\sqrt[3]{x}+\sqrt[3]{y}}{\sqrt[3]{z}}\)
=> \(x+y+1\ge\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{z}}\)
=>\(\frac{1}{x+y+1}\le\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\)
chung minh tuong tu cung co \(\frac{1}{x+z+1}\le\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\) va \(\frac{1}{z+y+1}\le\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\)
cong 3 bdt cung chieu ta duoc
\(\frac{1}{x+y+1}+\frac{1}{x+z+1}+\frac{1}{y+z+1}\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)
dau = xay ra khi x=y=z=1
Chuc ban hoc tot !!!
Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)
Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)
từ \(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\)\(\Rightarrow ab+bc+ca=1\)
Thay vào \(\sqrt{x^2+1}\) r` phân tích nhân tử áp dụng C-S là ra :3
Giả thiết thiếu rồi em, chỗ \(\dfrac{1}{x+1}+...\) thiếu đoạn sau nữa
Đặt \(\left(\dfrac{1}{\sqrt{x}};\dfrac{1}{\sqrt{y}};\dfrac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}=1\)
Ta cần chứng minh: \(ab+bc+ca\le\dfrac{3}{2}\)
Thật vậy, ta có:
\(1=\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)
\(\Rightarrow a^2+b^2+c^2+3\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le\dfrac{3}{2}\) (đpcm)
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}>=\sqrt{\dfrac{3}{xy}}\)
\(\dfrac{\sqrt{1+y^3+z^3}}{yz}>=\sqrt{\dfrac{3}{yz}}\)
\(\dfrac{\sqrt{1+z^3+x^3}}{xz}>=\sqrt{\dfrac{3}{xz}}\)
=>\(VT>=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)=3\sqrt{3}\)