K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: vecto AB=(6;-4)

PTTS là:

x=-6+6t và y=3-4t

b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)

Phương trình(d) là:

3(x-3)+(-2)(y-2)=0

=>3x-9-2y+4=0

=>3x-2y-5=0

14 tháng 6 2020

a) Gọi tâm của đường tròn I cần tìm là I(a;b), bán kính R nên ta có:

\(\left\{{}\begin{matrix}-2ax+-2x\\-2by=4y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

=> I(1;2)

Bán kính đường tròn là:\(R=\sqrt{1^2+2^2+20^2}=9\sqrt{5}\)

27 tháng 4 2022

a) Ta có: \(\overrightarrow{\text{BC}}\) = (1; -7)

               \(\overrightarrow{\text{ }n_{\text{BC}}}\)= (7; 1)

PTTQ: 7(x - 5) + 1(y - 5) = 0

=> 7x - 35 + y - 5 = 0

=> 7x + y - 40 = 0

b) Ta có: \(\overrightarrow{\text{AC}}\) = (8; -6)

=> \(\text{AC}=\sqrt{8^2+6^2}=10\)

Phương trình đường tròn là:

              (x + 2)2 + (y - 4)2 = 100

c) (C): (x + 2)2 + (y - 4)2 = 100

Ta có: \(\text{AM}=\sqrt{2^2+5^2}=\sqrt{29}\)

Để HK ngắn nhất => d(A; Δ) lớn nhất

=> d(A; Δ) = AM => AM ⊥ Δ

=> \(\overrightarrow{\text{n}_{\Delta}}\) = \(\overrightarrow{\text{AM}}\)

=> \(\overrightarrow{\text{n}_{\Delta}}\) = (-2; -5)

=> \(\text{2}\left(x+4\right)+5\left(y+1\right)=0\)

=> \(\text{ }2x+5y+13=0\)

21 tháng 7 2017

a) đặc C (x;y) , ta có : C \(\in\) (d) \(\Leftrightarrow x=-2y-1\)

vậy C (-2y -1 ; y ).

tam giác ABC cân tại C khi và chỉ khi

CA = CB \(\Leftrightarrow\) CA2 = CB2

\(\Leftrightarrow\) (3+ 2y + 1)2 + (- 1- y)2 = (- 1+ 2y + 1)2 + (- 2- y)2

\(\Leftrightarrow\) (4 + 2y)2 + (1 + y)2 = 4y2 + (2 + y)2

giải ra ta được y = \(\dfrac{-13}{14}\) ; x = \(-2\left(\dfrac{-13}{14}\right)-1=\dfrac{13}{7}-1=\dfrac{6}{7}\)

vậy C có tọa độ là \(\left(\dfrac{6}{7};\dfrac{-13}{14}\right)\)

b) xét điểm M (- 2t - 1 ; t) trên (d) , ta có :

\(\widehat{AMB}\) = 900 \(\Leftrightarrow\) AM2 + BM2 = AB2

\(\Leftrightarrow\) (4 + 2t)2 + (1 + t)2 + 4t2 + (2 + t)2 = 17

\(\Leftrightarrow\) 10t2 +22t + 4 = 0 \(\Leftrightarrow\) 5t2 + 11t + 2 = 0

\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{-1}{5}\\t=-2\end{matrix}\right.\)

vậy có 2 điểm thỏa mãn đề bài là M1\(\left(\dfrac{-3}{5};\dfrac{-1}{5}\right)\) và M2\(\left(3;-2\right)\)

31 tháng 5 2017

a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).

Phương trình chính tăc của (E) có dạng

\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)

\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)

\({a^2} = {b^2} + {c^2} = {b^2} + 3\)

Thay vào (1) ta được :

\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)

\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)

Suy ra \({a^2} = 4\)

Ta có a = 2 ; b = 1.

Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)

(0 ; -1) và (0 ; 1).

b) Phương trình chính tắc của (E) là :

\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)

c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).

Phương trình tung độ giao điểm của \(\Delta\)\((E)\) là :

\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)

Suy ra tọa độ của C và D là :

\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\)\(\left( {\sqrt 3 ;{1 \over 2}} \right)\)

Vậy CD = 1.