K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

a) đặc C (x;y) , ta có : C \(\in\) (d) \(\Leftrightarrow x=-2y-1\)

vậy C (-2y -1 ; y ).

tam giác ABC cân tại C khi và chỉ khi

CA = CB \(\Leftrightarrow\) CA2 = CB2

\(\Leftrightarrow\) (3+ 2y + 1)2 + (- 1- y)2 = (- 1+ 2y + 1)2 + (- 2- y)2

\(\Leftrightarrow\) (4 + 2y)2 + (1 + y)2 = 4y2 + (2 + y)2

giải ra ta được y = \(\dfrac{-13}{14}\) ; x = \(-2\left(\dfrac{-13}{14}\right)-1=\dfrac{13}{7}-1=\dfrac{6}{7}\)

vậy C có tọa độ là \(\left(\dfrac{6}{7};\dfrac{-13}{14}\right)\)

b) xét điểm M (- 2t - 1 ; t) trên (d) , ta có :

\(\widehat{AMB}\) = 900 \(\Leftrightarrow\) AM2 + BM2 = AB2

\(\Leftrightarrow\) (4 + 2t)2 + (1 + t)2 + 4t2 + (2 + t)2 = 17

\(\Leftrightarrow\) 10t2 +22t + 4 = 0 \(\Leftrightarrow\) 5t2 + 11t + 2 = 0

\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{-1}{5}\\t=-2\end{matrix}\right.\)

vậy có 2 điểm thỏa mãn đề bài là M1\(\left(\dfrac{-3}{5};\dfrac{-1}{5}\right)\) và M2\(\left(3;-2\right)\)

NV
9 tháng 3 2021

Câu 1 đề thiếu, điểm C thỏa mãn điều gì nữa? (ví dụ G là trọng tâm tam giác?)

Câu 2:

Do B, C đều thuộc d nên tọa độ có dạng: \(B\left(2b-3;b\right);C\left(2c-3;c\right)\) với \(b\ne c\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2c-2;c-2\right)\\\overrightarrow{BC}=\left(2c-2b;c-b\right)\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{BC}=0\\AC=3BC\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2c-2\right)\left(2c-2b\right)+\left(c-2\right)\left(c-b\right)=0\\\left(2c-2\right)^2+\left(c-2\right)^2=9\left(2c-2b\right)^2+9\left(c-b\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4c-4+c-2=0\\\left(2c-2\right)^2+\left(c-2\right)^2=45\left(c-b\right)^2\end{matrix}\right.\)

\(\Rightarrow...\)

7 tháng 4 2022

Mik đang bận nên chỉ có HD thôi ạ :

-Viết p/t đ/t d ; biểu diễn tọa độ P theo d

- Tính MN ; NP ; MP

- ADCT :  \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)  ( p = a + b + c / 2 ) 

GPT tìm tọa độ P 

NV
7 tháng 4 2022

\(\overrightarrow{NM}=\left(3;3\right)\Rightarrow MN=\sqrt{3^2+3^2}=3\sqrt{2}\) và đường thẳng MN nhận (1;-1) là 1 vtpt

Phương trình MN: 

\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)

Do P thuộc (d) nên tọa độ có dạng: \(\left(-8+2t;t\right)\)

\(\Rightarrow d\left(P;MN\right)=\dfrac{\left|-8+2t-t\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\left|t-8\right|}{\sqrt{2}}\)

\(S_{MNP}=\dfrac{1}{2}.d\left(P;MN\right).MN=18\)

\(\Leftrightarrow\dfrac{1}{2}.\dfrac{\left|t-8\right|}{\sqrt{2}}.3\sqrt{2}=18\)

\(\Rightarrow\left|t-8\right|=12\Rightarrow\left[{}\begin{matrix}t=20\\t=-4\end{matrix}\right.\) (loại \(t=20\) do P có tung độ âm)

\(\Rightarrow P\left(-16;-4\right)\Rightarrow2a-13b=20\)

11 tháng 8 2015

a) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\) . Vì \(\frac{2}{2}\ne\frac{2}{-2}\) nên \(\overrightarrow{AB};\overrightarrow{AC}\) không cùng phương => A; B; C không thẳng hàng

b) Gọi G là trọng tâm tam giác ABC => \(\begin{cases}x_G=\frac{x_A+x_B+x_C}{3}=\frac{-1+1+1}{3}=\frac{1}{3}\\y_G=\frac{y_A+y_B+y_C}{3}=\frac{1+3+\left(-1\right)}{3}=1\end{cases}\)=> G(1/3; 1)

c) ABCD là hình bình hành <=> \(\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\begin{cases}x_D-x_A=x_C-x_B\\y_D-y_A=y_C-y_B\end{cases}\) <=> \(\begin{cases}x_D+1=0\\y_D-1=-4\end{cases}\) <=> \(\begin{cases}x_D=-1\\y_D=-3\end{cases}\) Vậy D (-1;-3)

d)  \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)

=> \(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\)  =>  \(\overrightarrow{AB};\overrightarrow{AC}\) vuông góc với nhau => tam giác ABC vuông tại A

Ta có: AB2 = 2+ 22 = 8 ; AC2 = 22 + (-2)2 = 8 => AB = AC => Tam giác ABC cân tại A

vậy...

e) Có thể đề của bạn là tam giác ABE vuông cân tại E  ( Khi đó giải điều kiện: EA = EB và vec tơ EA . Vec tơ EB = 0)

g) M nằm trên Ox => M (m; 0)

Tam giác OMA cân tại O <=> OM = OA  Hay OM2 = OA<=> m= (-1)+ 12 => m2 = 2 <=> m = \(\sqrt{2}\) hoặc m = -  \(\sqrt{2}\)

Vậy M (\(\sqrt{2}\); 0) ; M (-\(\sqrt{2}\); 0 )

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
21 tháng 3 2021

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\x-2y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(0;-1\right)\)

Gọi vtpt của đường thẳng CM (cũng là đường cao kẻ từ C) có tọa độ \(\left(a;b\right)\)

H là chân đường cao kẻ từ B

\(cos\widehat{HBC}=\dfrac{\left|1.1+1.\left(-2\right)\right|}{\sqrt{1^2+1^2}.\sqrt{1^2+\left(-2\right)^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Rightarrow cos\widehat{MCB}=cos\widehat{HBC}=\dfrac{1}{\sqrt{10}}=\dfrac{\left|a+b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+1^2}}\)

\(\Leftrightarrow\sqrt{a^2+b^2}=\sqrt{5}\left|a+b\right|\Leftrightarrow a^2+b^2=5\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+5ab+2b^2=0\Leftrightarrow\left(a+2b\right)\left(2a+b\right)=0\)

Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(2;-1\right)\\\left(1;-2\right)\end{matrix}\right.\) (trường hợp (1;-2) loại do song song BH)

\(\Rightarrow\) Phương trình đường cao kẻ từ C:

\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\2x-y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(...\right)\)

Gọi N là trung điểm BC \(\Rightarrow\) tọa độ N

Tam giác ABC cân tại A \(\Rightarrow\) AN là trung tuyến đồng thời là đường cao

\(\Rightarrow\) Đường thẳng AN vuông góc BC \(\Rightarrow\) nhận (1;-1) là 1 vtpt và đi qua N

\(\Rightarrow\) Phương trình AN

Đường thẳng AB vuông góc CM nên nhận (1;2) là 1 vtpt

\(\Rightarrow\) Phương trình AB (đi qua B và biết vtpt)

\(\Rightarrow\) Tọa độ A là giao điểm AB và AN

20 tháng 5 2017

Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)

Ôn tập cuối năm môn Hình học