K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

33333.33334

8 tháng 7 2017

33333 x 33334

11 tháng 7 2017

=33333,33334 nhé bạn

21 tháng 3 2022

a=1111122222

11 tháng 7 2017

=33333,33334

13 tháng 9 2018

Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:

Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath

20 tháng 8 2016

 Hình như đây là 1 bài toán lớp 7. Bạn có thể giải theo cách đặt ẩn theo những bạn đã làm ở trên nhưng hình như lớp 7 chưa có đặt ẩn thì phải. 
Mình sẽ chỉ bạn phương pháp giải chi tiết theo cách lớp 7 như sau: 
1) Dự đoán kết quả (tính trong đầu): 
Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều. 
Bấm máy tính, ta có: 
12 = 3.4 
1122 = 33.34 
111222 = 333.334 
11112222 = 3333.3334 
.... 
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh: 
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1) 
=333.334 (đpcm) 
Đơn giản vậy thôi nếu biết trước kết quả, đây là 1 phương pháp bổ ích bạn nên tận dụng^^

13 tháng 9 2018

Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:

Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath

7 tháng 12 2018

A/tích của 2 số tự nhiên liên tiếp =>\(a\left(a+1\right)\)

Th1: Nếu a là số chẵn ta được

Số chẵn .(Số chẵn+1)

\(\Rightarrow a:2\)

\(\Rightarrow a\left(a+1\right)⋮2\)

Th1: Nếu a là số lẻ ta được

Số lẻ .(Số lẻ+1)

=Số lẻ.Số chẵn\(\Rightarrow a+1⋮2\)

\(\Rightarrow a\left(a+1\right)⋮2\)

B/ CM tương tự

a)Gọi hai số tự nhiên liên tiếp là n;n+1(n ∈ N)
Để n(n+1) chia hết cho hai => n có hai trường hợp
Nếu n chia hết cho 2 => n(n+1) chia hết cho 2(1)
Nếu n không chia hết cho 2 => n = 2k+1 => n+1 = 2k+1+1 = 2k+2 chia hết cho 2(2)
Từ (1); (2)
 => tích của hai số tự nhiên liên tiếp luôn luôn chia hết cho 2 

b) Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2) 
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp 
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2 
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3 
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3 
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6 

6 tháng 9 2015

b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.

Theo đề bài ta có :

A = a(a + 1) (a + 2) + 6

Ta có 6 = 3x2 mà ( 3,2) = 1

A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2

A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3

      Vậy tích của 3 STN liên tiếp chia hết cho 6.

 

16 tháng 9 2016

Hình như đây là 1 bài toán lớp 7. Bạn có thể giải theo cách đặt ẩn theo những bạn đã làm ở trên nhưng hình như lớp 7 chưa có đặt ẩn thì phải. 
Mình sẽ chỉ bạn phương pháp giải chi tiết theo cách lớp 7 như sau: 
1) Dự đoán kết quả (tính trong đầu): 
Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều. 
Bấm máy tính, ta có: 
12 = 3.4 
1122 = 33.34 
111222 = 333.334 
11112222 = 3333.3334 
.... 
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh: 
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1) 
=333.334 (đpcm) 
Đơn giản vậy thôi nếu biết trước kết quả, đây là 1 phương pháp bổ ích bạn nên tận dụng^

13 tháng 9 2018

Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:

Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath