Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Đức và Thọ đều viết đúng;
Hương nhận xét sai;
- Sơn rút ra được hằng đẳng thức là: (x - 5)2 = (5 - x)2
- Bình phương của một tổng:
- Bình phương của một hiệu:
- Hiệu hai bình phương:
- Lập phương của một tổng:
- Lập phương của một hiệu:
- Tổng hai lập phương:
- Hiệu hai lập phương:
- Bình phương của một tổng:
{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}
- Bình phương của một hiệu:
{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}
- Hiệu hai bình phương:
{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}
- Lập phương của một tổng:
{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}
- Lập phương của một hiệu:
{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}
- Tổng hai lập phương:
{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}
- Hiệu hai lập phương:
{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}
công thức :
6.tổng hai lập phương :
A3 + B3 = ( A+B).(A2 - AB + B2 )
7. hiệu hai lập phương :
A3 - B3 = ( A-B).( A2+ AB + B2 )
*Sxl
công thức 6.Tổng 2 lập phương
với a và b là biểu thức tùy ý ta có:A3+B3 =(A+B)(A2-AB+B2)
công thức 7:hiệu 2 lập phuong
A3-B3=(A-B)(A2+AB+B2)
\(\text{Sơn rút ra được hđt là: }\left(a-b\right)^2=\left(b-a\right)^2\)
1. Bình phương của một tổng
2. Bình phương của một hiệu
3. Hiệu hai bình phương
4. Lập phương của một tổng
5. Lập phương của một hiệu
6. Tổng hai lập phương
7. Hiệu hai lập phương
1. Bình phương của một tổng
2. Bình phương của một hiệu
3. Hiệu hai bình phương
4. Lập phương của một tổng
5. Lập phương của một hiệu
6. Tổng hai lập phương
7. Hiệu hai lập phương
(a + b)^2 = a^2 + 2ab + b^2
(a - b)^2 = a^2 - 2ab + b^2
a^2 - b^2 = (a-b)(a+b)
a^3 + b^3 = (a+b)(a^2 - ab + b^2)
a^3 - b^3 = (a-b)(a^2 + ab + b^2)
Tham khảo!
1. Bình phương của một tổng
Với A, B là các biểu thức tùy ý, ta có: ( A + B )2 = A2 + 2AB + B2.
Ví dụ:
a) Tính ( a + 3 )2.
b) Viết biểu thức x2+ 4x + 4 dưới dạng bình phương của một tổng.
Hướng dẫn:
a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32 = a2 + 6a + 9.
b) Ta có x2+ 4x + 4 = x2+ 2.x.2 + 22 = ( x + 2 )2.
2. Bình phương của một hiệu
Với A, B là các biểu thức tùy ý, ta có: ( A - B )2 = A2 - 2AB + B2.
3. Hiệu hai bình phương
Với A, B là các biểu thức tùy ý, ta có: A2 - B2 = ( A - B )( A + B ).
4. Lập phương của một tổng
Với A, B là các biểu thức tùy ý, ta có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.
5. Lập phương của một hiệu.
Với A, B là các biểu thức tùy ý, ta có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.
Ví dụ :
a) Tính ( 2x - 1 )3.
b) Viết biểu thức x3- 3x2y + 3xy2- y3 dưới dạng lập phương của một hiệu.
Hướng dẫn:
a) Ta có: ( 2x - 1 )3
= ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13
= 8x3 - 12x2 + 6x - 1
b) Ta có : x3- 3x2y + 3xy2- y3
= ( x )3 - 3.x2.y + 3.x. y2 - y3
= ( x - y )3
~HT~