Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lục giác DPEQFM có các cặp cạnh đối bằng nhau từng đôi một:
DP = QF (vì bằng 1/2 OA);
PE = MF (vì bằng 1/2 OC)
EQ = MD (vì bằng 1/2 OB)
Lục giác DPEQFM có 6 cạnh bằng nhau chỉ khi DP = PE = EQ.
Muốn vậy, ta phải có OA = OB = OC, khi đó O là điểm cách đều ba điểm A, B, C. Vậy O là giao điểm của ba đường trung trực tam giác ABC.
Theo tính chất trung tuyến, suy ra:
S1 = S2 (có đáy bằng nhau và cùng chiều cao) (1)
S3 = S4 (có đáy bằng nhau và cùng chiều cao) (2)
S5 = S6 (có đáy bằng nhau và cùng chiều cao) (3)
Ta có: S1 + S2 + S3 = S4 + S5 + S6 (= )
⇔ 2S1 + S3= S4 + 2S6 ( vì S1= S2; S5 = S6)
⇔ 2S1 = 2S6( vì S3 = S4)
⇔ S1 = S6.
Và S1+ S2+ S6 = S3 + S4 +S5 = (5)
Kết hợp (5) với (1), (2), (3) suy ra S2 = S3 (5’)
Và S1 + S5 + S6 = S2+ S3 + S4 = (6)
Kết hợp (6) với (1), (2), (3) suy ra S4 = S5 (6’)
Từ (4’), (5’), (6’) và kết hợp (1) (2) (3) ta có: S1= S2 = S3 = S4 = S5 = S6
a. Xét \(\Delta ABC\)
Ta có \(\hept{\begin{cases}AE=EB\\AD=DC\end{cases}\Rightarrow DE}\)là đường trung bình của tam giác ABC
\(\Rightarrow\)DE song song BC và \(DE=\frac{1}{2}BC\left(1\right)\)
Xét \(\Delta BGC\)có \(\hept{\begin{cases}BI=IG\\CK=KG\end{cases}\Rightarrow IK}\)là đường trung bình của tam giác BGC
\(\Rightarrow\)IK song song BC và \(IK=\frac{1}{2}BC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow DE\)song song \(IK\)và \(DE=IK\)
b. Theo tính chất của trọng tâm ta có
\(GF=\frac{1}{3}AF\);\(AG=\frac{2}{3}AF\left(3\right)\)
Xét \(\Delta ABG\)có IE là đường trung bình suy ra \(IE=\frac{1}{2}AG\left(4\right)\)
Từ (3) và (4) \(\Rightarrow IE=\frac{1}{2}AG=\frac{1}{2}.\frac{2}{3}AF=\frac{1}{3}AF=GF\)
Vậy \(IE=GF\)
Định nghĩa: là đường thẳng nối từ đỉnh đến trung điểm của cạnh đối diện trong tam giác
a) Xét tứ giác ADME có
ME//AD(gt)
MD//AE(gt)
Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ADME có \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))
nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ADME là hình chữ nhật(cmt)
nên ED=AM(Hai đường chéo trong hình chữ nhật ADME)
mà ED=5cm(gt)
nên AM=5cm
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
\(\Leftrightarrow BC=2\cdot AM=2\cdot5=10\left(cm\right)\)
Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{4.8\cdot10}{2}=24\left(cm^2\right)\)
c) Xét ΔABC có
M là trung điểm của BC(gt)
ME//AB(gt)
Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
MD//AC(gt)
Do đó: D là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)
Ta có: ΔAHB vuông tại H(AH⊥BC tại H)
mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)
nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
nên HD=AD
Ta có: ΔAHC vuông tại H(AH⊥BC tại H)
mà HE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)
nên \(HE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)
nên HE=AE
Xét ΔEAD và ΔEHD có
EA=EH(cmt)
ED chung
AD=HD(cmt)
Do đó: ΔEAD=ΔEHD(c-c-c)
⇒\(\widehat{EAD}=\widehat{EHD}\)(hai góc tương ứng)
mà \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)
nên \(\widehat{EHD}=90^0\)
hay HD⊥HE(đpcm)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Suy ra: BH=CH
b: Ta có: BH=CH
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAHB vuông tại H có
\(AB^2=AH^2+HB^2\)
hay AH=12(cm)
\(\Leftrightarrow AG=8\left(cm\right)\)
c: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
Trường hợp 1: Đường thẳng d song song với BC.
Theo định lý Ta - lét ta có:\(\frac{BE}{EA}=\frac{OD}{OA}\frac{CD}{FA}=\frac{OD}{OA}\)
Suy ra : \(\frac{BE}{AE}+\frac{CF}{AF}=1\Leftrightarrow\frac{OD}{OA}+\frac{OD}{OA}=1\Leftrightarrow2OD=OA\left(1\right)\)
TRƯỜNG HỢP 2 LÀM TƯƠNG TỰ NHA :D