Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
A:
20032003+1=20032002.2003+1=20032002+1
20032004+1=20032002.2003.2003+1=20032002.2003+1(loại số 2003 thứ hai của cả mẫu số và tử số)
B:
20032002+1=20032002+1
20032003+1=20032002.2003+1
Suy ra: A=B
( Hình thì bạn tự vẽ )
a/ ta có góc xOy là góc nhọn
=> xOy < 90độ
=> MOx= MOy<45 độ (1) .
Mặt khác: Giả sử OA>MA
=> AMO > MOA <=> 180 - BMO>MOA
<=> 180 - (MOA + OAM)> MOA
<=> 180 -(MOA+90)>MOA
<=> 90>2MOA
<=>MOA<45
<=> MOx<45 (đúng do (1))
Vậy OA>MA
b/ Giả sử OB>OM .
Khi đó: OMB > OBM
<=> OMB>180 - OMB - MOB
<=> 2OMB>180-MOA
<=>2OMB>180-(90-OMA)
<=> 2OMB-OMA>90
<=> 2OMB-(180-OMB)>90
<=> 3OMB>270
<=> OMB>90 (đúng do OMB= OAM + AOM=90+AOM)
Vậy OB >OM
Vì 20112011<20112012 =>20112011 +1<20112012 +1
=> 20112011+1/20112012+1 <1
=>B<1
=>B=20112011+1/20112012+1<20112011+1+2010/20112012+1+2010
=>B<20112011+2011/20112012+2011=20112010.2011+2011/20112011.2011+2011=2011.(20112010+1)/2011.(20112011+1)
=>B<20112010+1/20112011+1=A
=>B<A
Vậy B<A
\(B=\dfrac{20^{19}+1}{20^{20}+1}< \dfrac{20^{19}+1+19}{20^{20}+1+19}=\dfrac{20^{19}+20}{20^{20}+20}\)
\(B< \dfrac{20.\left(20^{18}+1\right)}{20.\left(20^{19}+1\right)}\)
\(B< \dfrac{20^{18}+1}{20^{19}+1}\)
\(B< A\)
Trên tia Ox có OA < OB nên A nằm giữa O và B
Lại có M là trung điểm OA nên M nằm giữa O và A
Suy ra O, M, A, B sắp xếp theo thứ tự đó trên Ox
Ta có: \(\dfrac{OB+AB}{2}=\dfrac{OA+AB+AB}{2}=\dfrac{OA}{2}+AB=MA+AB=MB\)
Mình nói tóm tắt thôi nhé!
a) chứng minh được tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn) => AD = DH (2 cạnh tương ứng)
b) tam giác HDC vuông tại H nên DC là cạnh lớn nhất => DC > DH; mà DH = AH (c/m trên) => DC > AD
c) Mình chưa nghĩ ra
Câu c là tính HC nhé bạn!
c) Tính BC bằng cách dùng định lí pytago trong tam giác ABC, ta có: BC = 10cm
BH + HC = BC = 10cm
BH = AB = 6cm
=> HC = 10 - 6 = 4 cm
Chúc bạn học tốt!
Bài 3:
\(\left(\dfrac{1}{32}\right)^7=\dfrac{1^7}{32^7}=\dfrac{1}{32^7}=\dfrac{1}{\left(2^5\right)^7}=\dfrac{1}{2^{35}}\\ \left(\dfrac{1}{16}\right)^9=\dfrac{1^9}{16^9}=\dfrac{1}{16^9}=\dfrac{1}{\left(2^4\right)^9}=\dfrac{1}{2^{36}}\)
Vì \(2^{35}< 2^{36}\) nên \(\dfrac{1}{2^{35}}>\dfrac{1}{2^{36}}\) hay \(\left(\dfrac{1}{32}\right)^7>\left(\dfrac{1}{16}\right)^9\)
Nếu \(\frac{a}{b}\)= \(\frac{a+n}{b+n}\) nhé bạn
Xét 3 trường hợp, a/b=1;a/b>1;a/b<1
Rồi trong mỗi trường hợp bạn quy đồng mẫu để chỉ ra p/s nhỏ hơn. Mình ko có nhiều thời gian nên chỉ nói vậy thôi, có gì không hiểu nhắn lại cho mình.