K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

  Nếu tam giác ABC là vuông thì cạnh huyền sẽ là cạnh lớn nhất

a, cạnh huyền tỉ lệ với 15 , 2 cạnh góc vuông tỉ lệ với 9 và 12

Ta thấy : \(9^2+12^2=15^2\)

Vậy tam giác ABC là tam giác vuông.

b, cạnh huyền tỉ lệ với 3 , 2 cạnh góc vuông tỉ lệ với 2.4 và 1.8

Ta thấy : \(2,4^2+1,8^2=3^2\)

Vậy tam giác ABC là tam giác vuông.

c, cạnh huyền tỉ lệ với  \(4\sqrt{2}\) , 2 cạnh góc vuông tỉ lệ với 4 và 4

Ta thấy : \(4^2+4^2=\left(\text{4\sqrt{2}}\right)^2\)\(4^2+4^2=\left(4\sqrt{2}\right)^2\)

Vậy tam giác ABC là tam giác vuông.

17 tháng 1 2018

Theo bài ra ta có: \(\frac{AB}{9}=\frac{AC}{12}=\frac{BC}{15}\)

Đặt \(\frac{AB}{9}=\frac{AC}{12}=\frac{BC}{15}=k\Rightarrow AB=9k;AC=12k;BC=15k\)

Ta có: \(AB^2+AC^2=\left(9k\right)^2+\left(12k\right)^2=9^2k^2+12^2k^2=k^2\left(9^2+12^2\right)=225k^2\left(1\right)\)

\(BC^2=\left(15k\right)^2=225k^2\left(2\right)\)

Từ (1) và (2) => \(AB^2+AC^2=BC^2\)

=> tam giác ABC vuông tại A (theo định lý pytago đảo)

AB;AC;BC tỉ lệ với 9;12;15(gt)

=>AB/9=AC/12=BC/15

=>AB^2/9^2=AC^2/12^2=BC^2/15^2

=>AB^2/81=AC^2/144=BC^2/225

=>AB^2+AC^2/81+144=BC^2/225

=>AB^2+AC^2/225=BC^2/225

=>AB^2+AC^2=BC^2

=> Tam giác ABC là tam giác vuông tạiA

14 tháng 2 2016

Ta có : AB2 + AC2= 92 + 122=225

BC2=152=225

Vì 225=225=>AB2+AC2=BC2 theo định lý pythagore

Vậy tam giác ABC vuông tại A

14 tháng 2 2016

theo bài ta có: AB:AC:BC=9:12:15

=>AB/9=AC/12=BC/15

đặt các tỉ số trên=k

=>AB=9k;AC=12k;BC=15k

xét: BC2=(15k)2=152.k2=225.k2 (1)

AB2+AC2=(9k)2+(12k)2=k2.(92+122)=225.k2(2)

từ (1);(2)=>BC2=AB2+AC2

=>tam giác ABC vuông tại A (đ/l Pytagođảo)

3 tháng 4 2020

Ta có 42 = 16 ; 62 = 36 ; 72 = 49

Ta thấy : 16 + 36 khác 49

=> Tam giác ABC không là tam giác vuông

b) Ta có 32 = 9 ; 2,42 = 5,76 ; 1,82 = 3,24

Ta thấy : 5,76 + 3,24 = 9

=> Tam giác ABC là tam giác vuông                          mk biết làm a và b thui tk mình nha

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B làA. 50° B. 60° C. 55° D. 75°Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A làA. 40° C. 15° C. 105° D. 30°Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:A MN^+ NP^= MP^B MP ^+NP^ =MN^C NM= NPD pN^+ MP^= MN^Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC làA. 17 cm B. 13 cm C. 14 cm D. 14,4 cmCâu 5. Cho tam giác...
Đọc tiếp

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:

A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^

Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
\(\sqrt{12}cm\)
 D. 156cm

Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm

Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng

A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
\(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp

 

0