Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Chứng minh rằng : Tổng }\)
\(S=1+2+3+...+n\left(n\in N\right)\)
\(\text{Không có chữ số tận cùng là }2\text{ ; }4\text{ ; }7\text{ ; }9\)
\(\text{Bài giải}\)
\(\text{Ta có : }\)
\(\text{Số số hạng của tổng }S=\left(n-1\right)\text{ : }1+1=n\left(\text{số hạng}\right)\)
\(\text{Tổng của }S=\left(n+1\right)\text{ x }n\text{ : }2\)
\(\Rightarrow\text{ }n+1\text{ là số chẵn hoặc số lẻ };\text{ }\Rightarrow\text{ }n\text{ là số chẵn hoặc số lẻ}\)
\(\Rightarrow\text{ Tích }\left(n+1\right)n\text{ là tích của hai số tự nhiên liên tiếp .}\)
\(\Rightarrow\text{ Tích là số chẵn }\)
\(\text{Còn nữa bạn tự suy nghĩ nha ! Sẽ ra liền mà ! Dài quá nên viết mỏi tay rồi ! Chúc bạn học tốt !}\)
a) Tổng A có số số hạng là:
`(101-1):1+1=101`(số hạng)
b) `A=2+2^3 +2^5 +...+2^101`
`2^2 A=2^3 +2^5 +2^7 +...+2^103`
`4A-A=2^3 +2^5 +2^7 +...+2^103 -2-2^3 -2^5 -...-2^101`
`3A=2^103 -2`
`=>3A+2=2^103 -2+2=2^103`
c) `A=2+2^3 +2^5 +...+2^101`
`A=2(1+2^2 +2^4 +...+2^100)⋮2`
`A=2+2^3 +2^5 +...+2^101`
`A=2(1+2^2 +2^4)+...+2^97 .(1+2^2 +2^4)`
`A=2.21+...+2^97 .21`
`A=21(2+...+2^97)⋮21`
a, TC:N=1+3+3^2+3^3+...+3^50+3^51
=(1+3)+(3^2+3^3)+...+(3^50+3^51)
=4+3^2.4+...+3^50.4
=4(1+3^2+...+3^50) chia hết cho 4
=>DCPCM
c, N=1+3+3^2+3^3+...+3^50+3^51
3N=3+3^2+3^3+...+3^51+3^52
=>3N-N=3^52-1
=>2N=3^52-1
=>N=(3^52-1):2
cmr [7+1].[7+2] chia hết cho 3
=8x9
=72
72 chia hết cho 3
ĐCPCM
Ta có chú ý chẵn cộng chẵn bằng chẵn
lẻ cộng chẵn bằng lẻ
lẻ cộng lẻ là chẵn
mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn
=> mà số chẵn chia hết cho 2
ĐCPCM
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
1) CMR: (7+1)(7+2)\(⋮\)3
\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)
2) CMR: \(3^{100}+19^{990}⋮2\)
ta có: \(3^{100}\)có chữ số tận cùng là số lẻ
\(19^{990}\)có chữ số tận cùng là số lẻ
mà lẻ + lẻ = chẵn => đpcm
3) abcabc có ít nhất 3 ước số nguyên tố
ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13
Vậy...
4) Cho \(M=1+3^1+3^2+...+3^{30}\)
Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?
ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)
\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)
(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)
\(\Leftrightarrow2M=3^{31}-1\)
ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)
\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8
=>đpcm
Học tốt nhé ^3^