K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

\(\text{Chứng minh rằng : Tổng }\)

\(S=1+2+3+...+n\left(n\in N\right)\)

\(\text{Không có chữ số tận cùng là }2\text{ ; }4\text{ ; }7\text{ ; }9\)

                                    \(\text{Bài giải}\)

\(\text{Ta có : }\)

\(\text{Số số hạng của tổng }S=\left(n-1\right)\text{ : }1+1=n\left(\text{số hạng}\right)\)

\(\text{Tổng của }S=\left(n+1\right)\text{ x }n\text{ : }2\)

             \(\Rightarrow\text{ }n+1\text{ là số chẵn hoặc số lẻ };\text{ }\Rightarrow\text{ }n\text{ là số chẵn hoặc số lẻ}\)

        \(\Rightarrow\text{ Tích }\left(n+1\right)n\text{ là tích của hai số tự nhiên liên tiếp .}\)

                          \(\Rightarrow\text{ Tích là số chẵn }\)

     \(\text{Còn nữa bạn tự suy nghĩ nha ! Sẽ ra liền mà ! Dài quá nên viết mỏi tay rồi ! Chúc bạn học tốt !}\)

16 tháng 7 2015

 \(\text{Tổng }=\frac{n\left(n+1\right)}{2}\)

Do n(n+1) chỉ có chữ số tận cùng là 0; 2; 6 nên tổng chỉ có tận cùng là 0; 1; 3.

 

20 tháng 9 2023

a) Xét hiệu : \(n^5-n\)

Đặt : \(A\text{=}n^5-n\)

Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)

\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)

Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .

\(\Rightarrow A⋮2\)

Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)

\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)

\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)

Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.

Do đó : \(A⋮10\)

\(\Rightarrow A\) có chữ số tận cùng là 0.

Suy ra : đpcm.

b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)

Với : n= 3k+1

Thì : \(n^2\text{=}9k^2+6k+1\)

Do đó : \(n^2\) chia 3 dư 1.

Với : n=3k+2

Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)

Do đó : \(n^2\) chia 3 dư 1.

Suy ra : đpcm.

22 tháng 10 2023

Đề sai rồi em!

23 tháng 10 2023

à thầy em giao nên em hỏi thôi ạ

 

22 tháng 11 2016

Đặt A=\(5^{2n}+2\)

A=\(\left(5^2\right)^n\)+2

A=\(25^n+2\)

\(5^n\) luôn có chữ số tận cùng là 5(n\(\in N\)*)

\(\Rightarrow\)\(25^n\) có chữ số tận cùng là 5

\(\Rightarrow\)A=\(25^n+2\) có chữ số tận cùng là 7

 

22 tháng 11 2016

Ta có: 52n + 2 = (52)n + 2 = 25n + 2

Vì 5n luôn có chữ số tận cùng là 5

=> 25n luôn có chữ số tận cùng là 5

=> 25n + 2 luôn có chữ số tận cùng là 7

=> đpcm