K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2023

ko bt lm

 

31 tháng 12 2017

a)  A  =  1 + 2 + 22 + 23 + ...... + 239

= (1 + 2 + 2+ 23) + (24 + 25 + 26 + 27) + .....+ (236 + 237 + 238 + 239)

= (1 + 2 + 22 + 23) + 24(1 + 2 + 22 + 23) + .......+ 236(1 + 2 + 22 + 23)

= 15 (1 + 24 + ...... + 236 )  \(⋮15\)

Vậy  A là bội của 15

b)   B = 2 + 22 + 23 + ...... + 22004

= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ...... + (22001 + 22002 + 22003 + 22004)

= 2(1 + 2 + 23 + 24) + 25(1 + 2 + 2+ 23) + ....... + 22001(1 + 2 + 22 +23)

= 15 (2 + 25 + ..... + 22001)           \(⋮15\)

Ta thấy B \(⋮2\)(vì các số hạng của B đều chia hết cho 2)

mà  (2; 15) = 1

nên  B \(⋮30\)

c)  Gọi 3 số lẻ liên tiếp là:  2k+1; 2k+3; 2k+5

Ta có:   2k+1 + 2k+3 + 2k+5 = 6k + 9

Ta thấy   6k   chia hết cho 6 nhưng  9 ko chia hết cho 6

nên  6k + 9  ko chia hết cho 6

Vậy tổng của 3 số lẻ liên tiếp ko chia hết cho 6

13 tháng 2 2019

ai giúp mk sẽ dk 10 k nha

24 tháng 2 2020

Bạn nên đánh số các câu hỏi chứ?

13 giờ trước (15:43)

a;  CM (2a + 6) ⋮ 2

    Ta có:  2a + 6 = 2.(a + 3) ⋮ 2 \(\forall\) a(đpcm)

b;   (9a + 27b) ⋮ 9

    Ta có: 9a + 27b = 9(a + 3b) ⋮ 9 \(\forall\) a; b 

c; CM : (2a + 4b + 1) không chia hết cho 2

           Ta có: 2a  +4b + 1 = 2(a + 2b) + 1 

        Vì 2.(a + 2b) ⋮ 2 mà 1 không chia hết cho 2 nên

           (2a + 4b + 1) không chia hết cho 2 (đpcm)

d; CM : (5a + 15b + 3) không chia hết cho 5

       Ta có: 5a + 15b + 3 = (5a+ 15b) + 3 = 5.(a + 3b) + 3

      Vì 5.(a + 3b) ⋮ 5 mà 3 không chia hết cho 5 nên

        (5a + 15b  + 3) không chia hết cho 5 (đpcm)

            

     

        

18 tháng 1 2016

Ta có: 

a2 - 1 = (a - 1)(a + 1)

Vì a là số lẻ => a - 1 và a + 1 là số chẵn => a2 - 1 chia hết cho 2 (1)

Xét 3 số tự nhiên liên tiếp: a - 1; a; a + 1

Vì a khoogn chia hết cho 3 => 1 trong 2 số a - 1 và a + 1 chia hết cho 3 => a2 - 1 chia hết cho 3 (2)

Từ (1) và (2), kết hợp vs (2,3) = 1 => a2 - 1 chia hết cho 2.3 = 6

 

AH
Akai Haruma
Giáo viên
24 tháng 8

Lời giải:

Nếu $a$ là số lẻ không chia hết cho $3$ thì $a$ có dạng $6k+1$ hoặc $6k+5$ với $k$ tự nhiên.

Nếu $a=6k+1$:

$a^2-1=(6k+1)^2-1=36k^2+12k+1-1=36k^2+12k=6(6k^2+2k)\vdots 6$

Nếu $a=6k+5$:

$a^2-1=(6k+5)^2-1=36k^2+60k+24=6(6k^2+5k+4)\vdots 6$

Vậy trong TH nào thì $a^2-1$ cũng luoonc hia hết cho $6$.